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Factor Model: for i = 1, . . .N , t = 1, . . .T ,

xit = λ′iFt + eit

Ft : vector of r common factors

λi : vector of r factor loadings

cit = λ′iFt : the common component

eit : idiosyncratic component.

• Key feature • N large, T large
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Outline of the talk

Applications of factor models

Sketch econometric framework

Main Statistical results

Caveats, theory and practice

What next?
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Example 1. Arbitrage Pricing Theory (APT):

Rit = ai + b′iFt + eit

E (eit |Ft) = 0

E (e2
it) = σ2

i ≤ σ2 <∞.

Ft : common (pervasive) factors in asset returns;

eit in large, well-diversified portfolios vanishes;

eit sufficiently uncorrelated across assets

no single asset dominates wealth in competitive equilibrium.
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What are the factors?

observed

portfolios
macroeconomic variables

innovations in GDP, inflation, changes in bond yields

latent

estimation of Ft : N large, T small.
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Example 2. Interest Rate Models:

rt = a0 + b′0F
M
t + b′1F

M
t−1 + . . . b′pF

M
t−p + et

= a0 + β′~FM
t + et .

Taylor rule:

FM
t : current and macro variables orthogonal to et

affine term structure models:

bond yields are linear in the underlying state variables
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Example 3. Demand Systems: J goods, H households

Eh = total spending on J goods by household h;

Marshallian demand: Xjh = gj(p,Eh)

budget share: wjh = Xjh/Eh

the rank of a demand system holding prices fixed

the smallest integer r such that

wj(E ) = λj1G1(E ) + . . . λjrGr (E ).

Fh = (G1(Eh), . . .Gr (Eh))
′ are r factors across goods
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Example 4. Coincident index

y1t = λ1Ft + z1t

y2t = λ2Ft + z2t

y3t = λ3Ft + z3t

y4t = λ4Ft + z4t

Ft = φFt−1 + vt

zit = αizit−1 + eit , i = 1, . . . 4.

N = 4, T large.
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Example 6. Forecasting

yt+1 = a′Xt + β′Wt + εt+1.

Xt : N observed variables.

Wt : observed variables

N large: inefficient

Assume Xit have common sources of variation Ft .

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 10 /

58



Example 6. Forecasting

yt+1 = a′Xt + β′Wt + εt+1.

Xt : N observed variables.

Wt : observed variables

N large: inefficient

Assume Xit have common sources of variation Ft .

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 10 /

58



Example 6. Forecasting

yt+1 = a′Xt + β′Wt + εt+1.

Xt : N observed variables.

Wt : observed variables

N large: inefficient

Assume Xit have common sources of variation Ft .

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 10 /

58



Diffusion Index Forecasting:

yt+1 = α′Ft + β′Wt + εt+1.

eg: Fed reacts to state of the economy.

rt = α′Ft + εt .
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Example 6. VAR: m variables

yt+1 =

p∑
k=0

α11(k)yt−k + e1t+1.

FAVAR: m variables + r factors

yt+1 =

p∑
k=0

a11(k)yt−k +

p∑
k=0

a12(k)Ft−k + e1t+1

Ft+1 =

p∑
k=0

a21(k)yt−k +

p∑
k=0

a22(k)Ft−k + e2t+1.
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Main Econometric issues

the factors Ft are not observed;

inference when Ft has to be estimated

the number of factors r is unknown

N and T both large
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Statistical Factor Models

xit = λ′iFt + eit .

Covariance Structure with ΣF = Ir .

Σx = ΛΛ′ + Ω

Strict factor model: Ω diagonal

Classical factor model:

(i) Ω diagonal
(ii) Ft and et serially uncorrelated

Anderson and Rubin: assume

(i) eit is iid over t,
(ii) normality,
(iii) N fixed T →∞.
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Large dimensional factor models:

approximate factor structure:

eit can be ‘weakly’ cross-sectionally and serially correlated

Ω need not be diagonal

N and T are large

distribution assumptions not imposed on eit
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Static vs. Dynamic Factors

dynamic factor model

xit = λi1f1t + λi2f1t−1 + eit .

Put F1t = f1t , F2t = f1t−1

static factor model

xit = λi1F1t + λi2F2t + eit .

q dynamic factors and s lags give r = q(s + 1) static factors.
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Properties of a model with r factors:

the r largest eigenvalues of Σx diverge as N increases;

the r + 1 eigenvalue is bounded.

example
xit = Ft + eit , eit ∼ iid(0, 1).

eig x
1 = N + 1,

eig x
i = 1, i = 2, . . . N.

the population principal components converge to the population
factors as N increases.

will need the sample principal components to converge to the
population principal components.
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Principal Components (PC) estimator

(F̃ , Λ̃) = min
Λ,F

(NT )−1
N∑

i=1

T∑
t=1

(xit − λ′iFt)
2.

F̃ : r eigenvectors (times
√

T ) associated with the r largest
eigenvalues of the matrix XX ′/(TN).

Λ̃ = (λ̃1, . . . , λ̃N)′ = X ′F̃/T

ẽ = X − F̃ Λ̃′.

The space spanned by the factors can be consistently estimated by F̃
when N and T are both large
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Intuition: let r = 1, λi = 1 and σ2
i = σ2 for all i .

xit = λiFt + eit

given xit , we cannot separately identify Ft and eit

with a large N : x̄t is
√

N consistent for Ft
1
N

∑N
i=1 xit = Ft + 1

N

∑N
i=1 eit

var( 1
N

∑N
i=1 eit) → 0 as N →∞

with a large T :

regressing each xi on F̃t gives
√

T consistent estimates of λi .

precision of factor estimates depends on both N and T .

method of PC weights Xit appropriately to yield F̃ when r > 1,
and/or there is heterogeneity in λi , σ

2
i .
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with a large T :

regressing each xi on F̃t gives
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T consistent estimates of λi .

precision of factor estimates depends on both N and T .

method of PC weights Xit appropriately to yield F̃ when r > 1,
and/or there is heterogeneity in λi , σ
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Assumptions

F(0) – moments

LFE – independence

L – identification

E – weak correlation

IE – homoskedsaticity
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Assumption F(0)
E‖F 0

t ‖4 ≤ M and 1
T

∑T
t=1 FtF

′
t

p−→ΣF > 0, is a r × r non-random
matrix.
Assumption LFE
{λi}, {Ft}, and {eit} are three mutually independent groups.
Dependence within each group is allowed.
Assumption L λ0

i is either deterministic such that ‖λ0
i ‖ ≤ M , or it is

stochastic such that E‖λ0
i ‖4 ≤ M . In either case,

N−1Λ0′Λ0 p−→ΣΛ > 0, a r × r non-random matrix, as N →∞.
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Assumption E:

b.i E (eit) = 0, E |eit |8 ≤ M .

b.ii E (eitejs) = σij ,ts
1

NT

∑
i ,j ,t,s=1 |σij ,ts | ≤ M

|σij ,ts | ≤ σ̄ij for all (t, s) and 1
N

∑N
i ,j=1 σ̄ij ≤ M ;

|σij ,ts | ≤ τts for all (i , j) and 1
T

∑T
t,s=1 τts ≤ M.
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b.iii For every (t, s), E |N−1/2
∑N

i=1

[
eiseit − E (eiseit)

]
|4 ≤ M .

b.iv For each t, 1√
N

∑N
i=1 λieit

d−→N(0, Γt), as N →∞ where

Γt = lim
N→∞

1

N

N∑
i=1

N∑
j=1

E (λiλj
′eitejt).

b.v For each i , 1√
T

∑T
t=1 Fteit

d−→N(0,Φi) as T →∞ where

Φi = lim
T→∞

T−1
T∑

s=1

T∑
t=1

E (F 0
t F 0′

s eiseit).

Assumption IE for all T and N and for all t ≤ T , i ≤ N ,∑T
s=1 |τst | ≤ M , and

∑N
i=1 |σij | ≤ M .
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Result A0.1:
Let C 2

NT = min[N ,T ], H is a r × r matrix of rank r

a Under F0 + L+E:

C 2
NT

(
1

T

T∑
t=1

∥∥∥F̃t − H ′F 0
t

∥∥∥)
= Op(1).

under F0+L+ E+LFE,

max
1≤t≤T

∥∥∥F̃t − H ′F 0
t

∥∥∥ = Op(T
−1/2) + OP((T/N)1/2).

if in addition
∑T

s=1 τs,t ≤ M for all t and T , then for each t,

C 2
NT

∥∥∥F̃t − Hk′F 0
t

∥∥∥2

= Op(1).
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Result A0.2: F̃t and λ̃i :

a if
√

N/T → 0, then for each t,

√
N(F̃t − H ′F 0

t )
d−→N(0,Avar(F̃t)).

If lim inf
√

N/T > c ≥ 0, then T (F̃t − H ′F 0
t ) = Op(1).

b if
√

T/N → 0, then for each i ,

√
T (λ̃i − H−1λ0

i )
d−→N(0, (Avar(λ̃i).

If lim inf
√

T/N > c > 0, then N(λ̃iH
−1 − λ0

i ) = Op(1).

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 25 /

58



Result A0.2: F̃t and λ̃i :

a if
√

N/T → 0, then for each t,

√
N(F̃t − H ′F 0

t )
d−→N(0,Avar(F̃t)).

If lim inf
√

N/T > c ≥ 0, then T (F̃t − H ′F 0
t ) = Op(1).

b if
√

T/N → 0, then for each i ,

√
T (λ̃i − H−1λ0

i )
d−→N(0, (Avar(λ̃i).

If lim inf
√

T/N > c > 0, then N(λ̃iH
−1 − λ0

i ) = Op(1).

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 25 /

58



Result A0.2: F̃t and λ̃i :

a if
√

N/T → 0, then for each t,

√
N(F̃t − H ′F 0

t )
d−→N(0,Avar(F̃t)).

If lim inf
√

N/T > c ≥ 0, then T (F̃t − H ′F 0
t ) = Op(1).

b if
√

T/N → 0, then for each i ,

√
T (λ̃i − H−1λ0

i )
d−→N(0, (Avar(λ̃i).

If lim inf
√

T/N > c > 0, then N(λ̃iH
−1 − λ0

i ) = Op(1).

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 25 /

58



Result A0.2: F̃t and λ̃i :

a if
√

N/T → 0, then for each t,

√
N(F̃t − H ′F 0

t )
d−→N(0,Avar(F̃t)).

If lim inf
√

N/T > c ≥ 0, then T (F̃t − H ′F 0
t ) = Op(1).

b if
√

T/N → 0, then for each i ,

√
T (λ̃i − H−1λ0

i )
d−→N(0, (Avar(λ̃i).

If lim inf
√

T/N > c > 0, then N(λ̃iH
−1 − λ0

i ) = Op(1).

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 25 /

58



Result A0.3: Common Component

Let Ait = λ0′
i Σ−1

Λ ΓtΣ
−1
Λ λ0

i , Bit = F 0′
t Σ−1

F ΦiF
0
t .

a Under Assumption F(0), E, LFE, and IE,

(N−1Ait + T−1Bit)
−1/2(C̃it − C 0

it)
d−→N(0, 1)

without restrictions on T/N or N/T .

b if N/T → 0, then
√

N(C̃it − Cit)
d−→N(0,Ait);

c if T/N → 0, then
√

T (C̃it − Cit)
d−→N(0,Bit)
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Result B: An Estimate of Avar(F̃t) is

Âvar(F̃t) = Ṽ−1Γ̃tṼ
−1.

Ṽ is the diagonal matrix of eigenvalues of (NT )−1XX ′.

To estimate the r × r matrix Γ, let ẽit = xit − λ̃′i F̃t :

B1 heterogeneous panel: let

Γ̃t =
1

N

N∑
i=1

ẽ2
it λ̃i λ̃

′
i .

B2 homogeneous panel: let Γ̃t = σ̃2
e

1
N

∑N
i=1 λ̃i λ̃

′
i .

B3 cross-sectionally correlated panel: let

Γ̃ =
1

n

n∑
i=1

n∑
j=1

λ̃i λ̃
′
j

1

T

T∑
t=1

ẽit ẽjt .
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Theorem

Suppose Assumptions F(0), E and LFE hold,

cross-sectionally uncorrelated panel: Γ̃t
p−→Γt .

cross-sectionally correlated panel: if E (eitejt) = σij for all t so
that Γt = Γ not depending on t. If n

min[N,T ]
→ 0.

‖Γ̃− H−1′ΓH−1‖ p−→0.
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Result C: Estimation of r :
Let

V (x , k , F̂ k) = min
Λ

(NT )−1
N∑

i=1

T∑
t=1

(xit − λ̂k′
i F̂ k

t )2.

Let g(N ,T ) be a penalty function. Define

PCP(k) = V (x , k , F̂ k) + k σ̂2
kmaxg(N ,T ).

Let
k̂ = argmin0≤k≤kmaxPCP(k).

Under Assumptions F(0), L, E, and LFE, limN,T→∞ prob(k̂ = r) = 1
if

i g(N ,T ) →∞ and

ii C 2
NTg(N ,T ) → 0 as N ,T →∞.
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Result D: Estimation of q:

xit = λ′iFt + ρi(L)xit−1 + eit

Suppose Ft = A(L)+Ft−1 + ut and ut = Rεt , R is r × q . Then

xit = λ′iA
+(L)Ft−1 + ρi(L)xit−1 + λ′iRεt + eit .

Restricted Equation
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Let ŵit be the residuals from the restricted regression
Let

q̂ = argminkPCP(k),

where
PCP(k) = V (ŵ , k , F̂ k) + k σ̂2

kmaxg(N ,T ).

Then
prob(q̂ = q)

p−→1.
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Result E: Inference Issues with F̃t

yt+h = α′F̃t + β′Wt + εt+h

= z̃ ′t+hδ + εt+h

If
√

T/N → 0, then
√

T (δ̂ − δ)
d−→N

(
0,Avar(δ)

)
.

A consistent estimator for Avar(δ̂) is

Âvar(δ̂) =
( 1

T

T−h∑
t=1

ẑt ẑ
′
t

)−1( 1

T

T−h∑
t=1

ε̂2
t+hẑt ẑ

′
t

)( 1

T

T−h∑
t=1

ẑt ẑ
′
t

)−1

.
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Âvar(δ̂) =
( 1

T

T−h∑
t=1
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′
t

)−1

.

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 32 /

58



Result E: Inference Issues with F̃t

yt+h = α′F̃t + β′Wt + εt+h

= z̃ ′t+hδ + εt+h

If
√

T/N → 0, then
√

T (δ̂ − δ)
d−→N

(
0,Avar(δ)

)
.

A consistent estimator for Avar(δ̂) is

Âvar(δ̂) =
( 1

T

T−h∑
t=1

ẑt ẑ
′
t

)−1( 1

T

T−h∑
t=1

ε̂2
t+hẑt ẑ

′
t

)( 1

T

T−h∑
t=1

ẑt ẑ
′
t

)−1

.
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Result E.2
Let δj be the parameters of the j-th equation of a FAVAR(p).

If
√

T/N → 0,

√
T (δ̂j−δj)

d−→N

(
0, plim (

1

T

T∑
t=1

ẑt ẑ
′
t)
−1

(
1

T

T∑
t=1

(ε̂jt)
2ẑt ẑ

′
t

)
(
1

T

T∑
t=1

ẑt ẑ
′
t)
−1

)
.
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Result F: IV estimation
Regression: yt = x ′tβ + εt , E (εtxt) 6= 0.
Let zit be a large panel of valid instruments and

xt = ψ′Ft + ut

zit = λ′iFt + eit .

F1: Let gt = F̃tεt . Then β̂FIV = β0 + op(1) ;

F2: If, in addition,
√

T
N
→ 0 as N ,T →∞,

√
T (β̂FIV − β0)

d−→N

(
0,Avar(β̂FIV )

)
where Avar(β̂FIV ) = plim (SF̃ x(Ŝ)−1S ′

F̃ x
)−1.

F3: Let β̂IV be the estimator using z2 observed instruments. Then

Avar(β̂IV )− Avar(β̂FIV ) ≥ 0.
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Sketch of argument: Why need
√

T/N → 0?

√
Tḡ = T−1/2

T∑
t=1

F̃tεt

=
√

T
1

T

T∑
t=1

(F̃t − HF 0
t )εt + HT−1/2

T∑
t=1

F 0
t εt .

1
T
ε′(F̃ − HF ) = Op(

1
min[N,T ]

)

1√
T
ε′(F̃ − HF ) = Op(

√
T

min[N,T ]
)

if
√

T
N
→ 0 as N ,T →∞, F̃ can treated as though they were F

in estimation
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Tḡ = T−1/2

T∑
t=1

F̃tεt

=
√

T
1

T

T∑
t=1

(F̃t − HF 0
t )εt + HT−1/2

T∑
t=1

F 0
t εt .

1
T
ε′(F̃ − HF ) = Op(

1
min[N,T ]

)

1√
T
ε′(F̃ − HF ) = Op(

√
T

min[N,T ]
)

if
√

T
N
→ 0 as N ,T →∞, F̃ can treated as though they were F

in estimation

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 35 /

58



Sketch of argument: Why need
√

T/N → 0?

√
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Result G:
Gt = (G1t , . . .Gmt): a m × 1 vector of observed proxies for the
unobserved factors, F .

Suppose
Gjt = δ′jFt + εjt .

Let
ε̂jt = Gjt − Ĝjt .

As N ,T →∞

ε̂jt − εjt
sjt

d−→N(0, 1)

s2
jt = T−1F̃ ′t(T

−1
∑T

s=1 F̃s F̃
′
s ε̂

2
js)
−1F̃t + N−1Avar(Ĝjt),
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Let

NS(j) =
v̂ar(ε̂(j))

v̂ar(Ĝ (j))

R2(j) =
v̂ar(Ĝ (j))

v̂ar(G (j))
.

Then NS(j) should be close to zero and R2(j) should be close to one
under the null hypothesis.
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Figure 1: Measurement Errors and Their Confidence intervals
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Other applications:

consistent estimation of the factors without knowing if the
idiosyncratic errors are I(0) or I(1) (spurious regressions)

individual unit root tests

panel unit root tests with cross-section dependence

panel cointegration analysis with cross-section dependence
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Key to all the results:

the factor space can be consistently estimated by the method of
principal components when N and T are both large.

’ideal case’: iid data, min[T ,N] = 30 yields precise estimates
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Solid Line: Ft

Serena Ng () RECENT DEVELOPMENTS IN LARGE DIMENSIONAL FACTOR ANALYSIS
June 2007 SCE Meeting, Montreal 40 /

58



Practical issues

is the principal components estimator efficient?

are more data always better?

weak factor structure?
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When might the PC estimator be inefficient?

An unweighted objective function

V (k) = min
Λ,F

(NT )−1
N∑

i=1

T∑
t=1

(xit − λ′iFt)
2.

ML estimation: F̂t are the eigenvectors of Ω̃−1/2Σ̂xΩ̃
−1/2.

PC estimation of Ft : eigenvectors of Σ̂x .

When Ω 6= ωIn , the PC will be less precise.

Implication: cross-section correlation and heteroskedasticity will
affect the precision of the factor estimates.
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How much data do we need?

If the additional data are informative about the factor structure,
more data always yield more efficient estimates.

What if some of the data are ’noisy’, or have a weak factor
structure?

example (duplicated data) : N = 2N1. Then var(F̃t) = Op(N
−1
1 ).
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the j-th eigenvalue of Σx measures the cumulative effect of the j
factor on the cross-section units.

strong factor asymptotics assumes that as N increases:

eig x
r /eig x

r+1 →∞
eig e

1 is bounded

Implication:

eig e
1 /eig x

r ( noise to signal ratio ) should tend to zero
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Why properties of eigenvalues are important?

if eig e
1 is bounded, the population principal components

converge to the population factors as N increases

the sample principal components converge to the population
principal components as T increases (irrespective of N)
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We assume 1
N

∑
i

∑
j |E (eitejt)| < M .

fact: eig e
1 ≤ maxi

∑
j |E (eitejt)|

implication: eig e
1 can be bounded and yet maxi

∑
j |E (eitejt| can

increase with N .

we allow more cross-section correlation than if eig e
1 is bounded.
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Weak instrument asymptotics :

the least influential factor is comparable to the strongest idiosyncratic
noise.

when the r -th eigenvalue is too small,

F̃ = FQ + F⊥

where Q is a random matrix with diagonal elements strictly
smaller than unity, and F⊥ is also random and orthogonal to F .

Two indicators of precision of the factor estimates.

eig x
r+1/eig

x
r

eig e
1 /eig

x
r
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the least influential factor is comparable to the strongest idiosyncratic
noise.

when the r -th eigenvalue is too small,

F̃ = FQ + F⊥

where Q is a random matrix with diagonal elements strictly
smaller than unity, and F⊥ is also random and orthogonal to F .
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Simulations
For i = 1, . . .N and t = 1, . . .T ,

xit = λ′i(L)ft + σieit

λi(L) = λi0 + λi1L + . . . λiL
s .

σ2
i is set so that R2

i ∼ U[R2
L ,R

2
U ],

R2
U = .8.

λij ∼ N(0, 1)
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r = q(s + 1) static factors;
q = 1:

(1− ρf L)ft = ut , ut ∼ N(0, 1)

(1− ρeL)eit = εit , E (εtε
′
t) = Ω.

Error variance matrix

Ω = IN (errors are cross-sectionally uncorrelated)

cross-section correlation: Nc × N2 elements of Ω are non-zero.
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Parameters of the simulations are

(N ,T )=(20,50), (50,100), (100,50), (100,100), (50,200),
(100,200);

s = 0, 1;

ρf = 0, .4, .8 ;

ρe=0, U(0, .5), or U(.4, .8)

R2
L=.1, .35, .6;

Nc= 0, .15, .3;
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For a given s and sample size: 81 configurations

total of 486 configurations

1000 replications each

keep track of eigenvalues

eig x
r : average of the r -th largest eigenvalue of the matrx

Σxx = x ′x/(NT ) over 1000 replications
eig e

1 : the largest eigenvalue of Ω.
EIGA,B(a, b): the ratio of the a-th largest eigenvalue of the
covariance matrix of A to the b-th largest eigenvalue of the
covariance matrix of B.

Let FIT= R2 from a regression of F̃t on Ft and a constant.
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Response surface analysis:
Regress FIT on

C 2
NT , CNT = min[

√
N ,
√

T ]

ratio of eigenvalues

non-linear terms
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Dependent variable: FIT
Regressor β̂ tβ̂ β̂ tβ̂

r = 1
constant 0.974 21.244 1.000 66.855

C−1
NT 0.158 0.238 0.219 1.066

C−2
NT -4.086 -1.819 -3.030 -4.250

EIGx ,x(r + 1, r) -0.116 -1.700
EIGe,x(1, 1) 0.025 7.906

EIGx ,x(r + 1, r)2 -0.952 -6.564
EIGe,x(1, 1)2 -0.003 -10.694

R̄2 .246 .927
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Dependent variable: FIT

Regressor β̂ tβ̂ β̂ tβ̂
r = 2

constant 0.958 15.048 0.988 37.176
C−1

NT -0.257 -0.299 0.022 0.061
C−2

NT -3.196 -1.184 -1.499 -1.307
EIGx ,x(r + 1, r) 0.286 7.681

EIGe,x(1, 1) -0.019 -5.231
EIGx ,x(r + 1, r)2 -1.007 -19.892

EIGe,x(1, 1)2 -0.000 -0.214
R̄2 .121 0.8454
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Future work
1. More efficient estimators in a large N and T environment

GLS type principal components estimator

QMLE

Dynamic bayesian analysis

2. (i , j , t) model

xijt = λijFt + eijt

λij = ψiGj + εij

individual i in region j at time t

individual, regional, aggregate effects.
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3. Identification of factors

structural/confirmatory factor analysis

time varying loadings: λit = λ0i + λ1i t

xit = λitFt + eit

= λ0iFt + λ1iFt · t + eit

= λ0iF1t + λ1iF2t + eit .
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4. DSGE Models

small number of common shocks

stochastic singularity
measurement error ⇒ factor structure

identification and estimation

Bayesian analysis in a large N and T setting
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Conclusion:

the factor model is a useful way of achieving dimension reduction

factor estimates have good properties when N ,T are large

generated new theory and new applications
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Thank You!
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