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Abstract

This paper develops a reliable method for Bayesian estimation of dynamic discrete choice models (DDCMs)
with serially correlated unobserved state variables. Inference in these models involves computing high-dimensional
integrals that are present in the solution to the dynamic program (DP) and in the likelihood function. First,
the paper shows that the Gibbs sampler, employing data augmentation and the Metropolis-Hastings algorithm,
can handle the problem of multidimensional integration in the likelihood, which was previously considered in-
feasible for DDCMs with serially correlated unobservables. Second, the paper presents an efficient algorithm
for solving the dynamic program suitable for use in conjunction with the Gibbs sampler estimation procedure.
The algorithm iterates the Bellman equation only once for each parameter draw on a random grid over the
state space. To approximate the expected value functions on the current Gibbs sampler iteration, the algorithm
uses importance sampling over the value functions from the previous Gibbs sampler iterations that correspond
to the nearest neighbors of the current parameter draw. The complete (and thus a.s.) uniform convergence
of these DP solution approximations to the true values is proven under mild assumptions on the primitives of
DDCMs. Third, the paper establishes the complete convergence of the corresponding approximated posterior
expectations. Fourth, the paper evaluates the method’s performance on two different DDCMs using real and
artificial datasets. The experiments demonstrate that ignoring serial correlation in unobservables of DDCMs
can lead to serious misspecification errors. Finally, experiments on dynamic multinomial logit models, for which
analytical integration is also possible, show that the estimation accuracy of the proposed method is excellent.
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1 Introduction

Dynamic discrete choice models (DDCMs) describe the behavior of a forward-looking economic
agent who chooses between several available alternatives repeatedly over time. Estimation of the
deep structural parameters of such decision problem is a theoretically appealing and promising area
in empirical economics. In contrast to conventional statistical modeling of discrete data, it does not
fall under the Lucas critique and often produces better behavior forecasts. Structural estimation
of dynamic models though, is very complex computationally. This fact substantially limits the
ability of estimable models to capture essential features of the real world. One such important
feature that had mainly to be assumed away in the literature is the presence of serial correlation
in unobserved state variables. Although introducing serial dependence in modelled productivity,
health status, or taste idiosyncrasies would improve the credibility of obtained quantitative results,
general feasible estimation methods for dealing with serially correlated unobservables in dynamic
discrete choice models are yet to be developed, according to Rust (1994). This paper attempts to
develop such a feasible general method.

Advances in simulation methods and computing speed over the last two decades made the
Bayesian approach to statistical inference practical. Bayesian methods are now applied to many
problems in statistics and econometrics that could not be tackled by the classical approach. Static
discrete choice models, and more generally, models with latent variables, are one of those areas
where the Bayesian approach was extremely fruitful, see for example McCulloch and Rossi (1994)
and Geweke et al. (1994). In these models, the likelihood function is often an intractable integral
over the latent variables. In Bayesian inference, the posterior distribution of the model parameters
is usually explored by simulating a sequence of parameter draws that represents the posterior dis-
tribution. A simulation technique called the Gibbs sampler is particularly convenient for exploring
posterior distributions in models with latent variables. This sampler simulates the parameters con-
ditional on the data and the latent variables, and then simulates the latent variables conditional
on the data and the parameters. The resulting sequence of the simulated parameters and latent
variables is a Markov chain with the stationary distribution equal to the joint posterior distribu-
tion of the parameters and the latent variables. Thus, the high-dimensional integration required
at each step of classical likelihood maximization can be replaced with sequential simulation from
low-dimensional distributions in the Bayesian approach. In DDCMs, the likelihood function is an
integral over the unobserved state variables. If the unobserved state variables are serially corre-
lated, computing this integral is generally infeasible. Standard tools of Bayesian inference—the
Gibbs sampler and the Metropolis-Hastings algorithm—are employed in this paper to successfully
handle this issue.

One of the main obstacles for Bayesian estimation of dynamic discrete choice models is the com-
putational burden of solving the dynamic program at each iteration of the estimation procedure.
Imai et al. (2005) were the first to attack this problem and consider application of Bayesian meth-
ods for estimation of dynamic discrete choice models with iid unobserved state variables. Their
method uses a Markov chain Monte Carlo (MCMC) algorithm that solves the DP and estimates
the parameters at the same time. The Bellman equation is iterated only once for each draw of the
parameters. To obtain the approximations of the expected value functions for the current MCMC
draw of the parameters, the authors use kernel smoothing over the approximations of the value
functions from the previous MCMC iterations. The authors also provide a proof that for discrete
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observed state variables and deterministic observed state transitions their approximations of the
value functions converge in probability to the true values.

This paper extends the work of Imai et al. (2005) in several dimensions. First, it introduces
a different parameterization of the Gibbs sampler and Metropolis-within-Gibbs steps to account
for the effect of change in parameters on the expected value functions. Second, it allows for
serial correlation in unobservables. Third, instead of kernel smoothing it uses nearest neighbors
from previously generated parameter draws for approximating the expected value functions for
the current parameter draw. The complete (and thus a.s., see Hsu and Robbins (1947)) uniform
convergence of these nearest neighbor approximations is established for a more general model setup:
a compact state space, random state transitions and less restrictive assumptions on the Gibbs
sampler transition density. In addition to the wider theoretical applicability of this proposed DP
solution method, there might be a substantial practical advantage since kernel smoothing does not
work well in many dimensions: e.g., Scott (1992), pp. 189–190, shows that the nearest neighbor
algorithm outperforms the usual kernel smoothing method in density estimation for Gaussian data
if the number of dimensions exceeds four.

The proposed Gibbs sampler estimation procedure uses the approximations described above
instead of the actual DP solutions. How this might affect inference results is an important issue.
In Bayesian analysis, most inference exercises involve computing posterior expectations of some
functions. For example, the posterior mean and the posterior standard deviation of a parameter
can be expressed in terms of posterior expectations. Moreover, the answers to the policy questions
that DDCMs address also take this form. Using the uniform complete convergence of the approx-
imations of the expected value functions, I prove the complete convergence of the approximated
posterior expectations under weak assumptions on a kernel of the joint posterior distribution of
the parameters and the latent variables in the Gibbs sampler.

The estimation method is experimentally evaluated on two different DDCMs: the Rust (1987)
binary choice model of optimal bus engine replacement and the Gilleskie (1998) model of medical
care use and work absence. Serially correlated unobserved state variables are introduced into these
models instead of the original extreme value iid unobservables. Model simplicity and availability
of the data1 make Rust’s model very attractive for computational experiments. Experiments on
Gilleskie’s model in turn show that the method works when the number of alternatives exceeds
two.

Estimation experiments presented in the paper are meant to demonstrate the utility of the
proposed method. Experiments on data from Rust (1987) confirm Rust’s conclusion of weak
evidence of the presence of serial correlation in unobservables for his model and dataset. However,
experiments on artificial data show that the estimated choice probabilities implied by a dynamic
logit model and a model with serially correlated unobservables can behave quite differently. More
generally, the experiments demonstrate that ignoring serial correlation in unobservables of DDCMs
can lead to serious misspecification errors.

The proposed theoretical framework is flexible and leaves room for experimentation. Exper-
iments with the algorithm for solving the DP led to a discovery of modifications that provided
increases in speed and precision beyond those anticipated directly by the theory. First, iterating
the Bellman equation on several smaller random grids and combining the results turns out to be a

1http://gemini.econ.umd.edu/jrust/nfxp.html
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very efficient alternative to iterating the Bellman equation on one larger random grid. Second, the
approximation error for a difference of expected value functions is considerably smaller than the
error for an expected value function by itself (this can be taken into account in the construction
of the Gibbs sampler.) Finally, iterating the Bellman equation several times for each parame-
ter draw, using the Gauss-Seidel method and a direct search procedure, also produces significant
performance improvement.

A verification of the algorithm implementation is provided in the paper. For example, to assess
the accuracy of the proposed DP solving algorithm I apply it to a dynamic multinomial logit
model, in which unobservables are extreme value iid and the exact DP solution can be quickly
computed. The design and implementation of the posterior, prior, and data simulators are checked
by joint distribution tests (see Geweke (2004).) Multiple posterior simulator runs are used to check
the convergence of the MCMC estimation procedure. The proposed estimation algorithm can be
applied to dynamic multinomial logit models, for which an exact algorithm is also available. A
comparison of the estimation results for the proposed algorithm and the exact algorithm suggests
that the estimation accuracy is excellent.

Section 2 of the paper sets up a general dynamic discrete choice model, constructs its likelihood
function, and outlines classical and Bayesian estimation procedures. The algorithm for solving
the DP and corresponding convergence results are presented in Section 3. Section 4 states the
convergence result for the approximated posterior expectations. The proofs are given in Appendix
A. The models used in experiments are described in Section 5. This section also provides a
verification of the method and implementation details. The last section concludes with a summary
of findings and directions for future work.

2 Setup and estimation of DDCMs

Eckstein and Wolpin (1989) and Rust (1994) survey the literature on the classical estimation of
dynamic discrete choice models. Below, I briefly introduce a general model setup and emphasize
possible advantages of the Bayesian approach to the estimation of these models, especially in
treating the time dependence in unobservables.

Dynamic discrete choice models describe the behavior of an optimizing forward-looking eco-
nomic agent who chooses between several available alternatives repeatedly over time taking into
account her expectations about unknown future developments and her optimal future choices.
Each period t the agent chooses an alternative dt from a finite set of available alternatives D(st).
The per-period utility u(st, dt; θ) depends on the chosen alternative, current state variables st ∈ S,
and a vector of parameters θ ∈ Θ that we want to estimate. The state variables are assumed
to evolve according to a controlled first order Markov process with a transition law denoted by
f(st+1|st, dt; θ) for t ≥ 1; the distribution of the initial state is denoted by f(s1|θ). Time is dis-
counted with a factor β. In the recursive formulation of the problem, the lifetime utility of the
agent or the value function is given by the maximum of the alternative-specific value functions:

V (st; θ) = max
dt∈D(st)

V(st, dt; θ) (1)

V(st, dt; θ) = u(st, dt; θ) + βE{V (st+1; θ)|st, dt; θ} (2)
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This formulation embraces a finite horizon case if time t is included in the vector of the state
variables.

In an estimable dynamic discrete choice model it is usually assumed that some state variables
are unobserved by econometricians. Let’s denote the unobserved part of the state variables by
yt and the observed part by xt. All the state variables st = (xt, yt) are known to the agent
at time t when they are realized. No model can perfectly predict human behavior. Using the
unobserved state variables is an attractive way to structurally incorporate random errors in the
model. The unobserved state variables can be interpreted as shocks, taste idiosyncrasy, unobserved
heterogeneity, or measurement errors. They may also be more specific: e.g. health status or returns
to patents. The unobservables play an important role in the estimation. The likelihood function
of a DDCM is an integral over the unobservables. In a static case, as few as n unobservables
can be used in a model with 2n alternatives to produce non-zero choice probabilities for all the
alternatives and for any parameter vector in Θ given that the support of the distribution for
the unobservables is sufficiently large relative to Θ. It would happen, for example, if a distinct
combination of the components of n-dimensional yt additively enters the utility function for each
alternative. However, it is often more convenient to assume a larger number of the unobservables,
e.g., a dynamic multinomial logit model has one unobservable for each alternative.

The set of the available alternatives D(st) is assumed to depend only on the observed state
variables. Hereafter, it will be denoted by D to simplify the notation. This is without loss of
generality since we could set D = ∪xt∈XD(xt) and the alternatives unavailable at state xt could
be assigned a low per-period utility value.

A data set that is usually used for the estimation of a dynamic discrete choice model consists
of a panel of I individuals. The observed part of the state and the decisions are known for each
individual i ∈ {1, . . . , I} for Ti periods: {xt,i, dt,i}Ti

t=1. Assuming that the state variables are
independent for the individuals in the sample, the likelihood for the model can be written as

p({xt,i, dt,i}Ti
t=1, i ∈ {1, . . . , I}|θ) =

I∏
i=1

p(xTi,i, dTi,i, . . . , x1,i, d1,i|θ) = (3)

I∏
i=1

∫
p(yTi,i, xTi,i, dTi,i, . . . , y1,i, x1,i, d1,i|θ)dyTi,i, . . . , dy1,i

The joint density p(yTi,i, xTi,i, dTi,i, . . . , y1,i, x1,i, d1,i|θ) could be decomposed as follows

p(yTi,i, xt,i, dt,i, . . . , y1,i, x1,i, d1,i|θ) =

Ti∏
t=1

p(dt,i|yt,i, xt,i; θ)f(xt,i, yt,i|xt−1,i, yt−1,i, dt−1,i; θ) (4)

where f(.|.; θ) is the state transition density, {x0,i, y0,i, d0,i} = ∅, and p(dt,i|yt,i, xt,i; θ) is an indicator
function:

p(dt,i|yt,i, xt,i; θ) = 1{V(yt,i,xt,i,dt,i;θ)≥V(yt,i,xt,i,d;θ),∀d∈D}(yt,i, xt,i, dt,i; θ) (5)

In general, evaluation of the likelihood function in (3) involves computing multidimensional
integrals of an order equal to Ti times the number of components in yt, which becomes infeasible
for large Ti and/or multi-dimensional unobservables yt. That is why in previous literature the
unobservables were mainly assumed to be iid. In a series of papers, John Rust developed a
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dynamic multinomial logit model, where he assumed that the utility function of the agents is
additively separable in the unobservables and that the unobservables are extreme value iid. In
this case, the integration in (3) can be performed analytically. Pakes (1986) used Monte Carlo
simulations to approximate the likelihood function in a model of binary choice with a serially
correlated one-dimensional unobservable.

In a Bayesian framework, the high dimensional integration over yt for each parameter value
can be circumvented by employing Gibbs sampling and data augmentation. In models with latent
variables, the Gibbs sampler typically has two types of blocks: (a) parameters conditional on other
parameters, latent variables and the data; (b) latent variables conditional on other latent variables,
parameters and the data (this step is sometimes called data augmentation.) The draws simulated
from this Gibbs sampler form a Markov chain with the stationary distribution equal to the joint
distribution of the parameters and the latent variables conditional on the data. The densities for
both types of the blocks are proportional to the joint density of the data, the latent variables, and
the parameters. Therefore, in order to construct the Gibbs sampler in our case, we need to obtain
an analytical expression for the joint density of the data, the latent variables, and the parameters.

By a parameterization of the Gibbs sampler I mean a set of parameters and latent variables used
in constructing the sampler. One parameterization is obtained from another by a change of vari-
ables. The number of the variables does not have to be the same for different parameterizations:
some variables could just have degenerate distributions given other variables in the parameteriza-
tion. This section illustrates that although any parameterization validly describes the econometric
model, the parameterization choice could be crucial for the Gibbs sampler performance. For a
simple example, consider parameterizing a multinomial probit model by the error terms and the
parameters instead of the latent utilities and the parameters.

It is straightforward to obtain an analytical expression for the joint density of the data, the
latent variables, and the parameters under the parameterization of the Gibbs sampler in which
the unobserved state variables are directly used as the latent variables in the sampler:

p(θ; {dt,i; yt,i; xt,i}Ti
t=1; i = 1, . . . , I) =

p(θ)
I∏

i=1

Ti∏
t=1

p(dt,i|xt,i, yt,i; θ)f(xt,i, yt,i|xt−1,i, yt−1,i, dt−1,i; θ) (6)

where p(θ) is a prior density for the parameters and p(dt,i|xt,i, yt,i; θ) is an indicator function defined
in (5). It is evident from (6) that in this Gibbs sampler, the parameter blocks will be drawn subject
to the observed choice optimality constraints:

V(yt,i, xt,i, dt,i; θ) ≥ V(yt,i, xt,i, d; θ),∀d ∈ D, ∀t ∈ {1, . . . , Ti},∀i ∈ {1, . . . , I} (7)

For realistic sample sizes, the number of these constraints is very large and the algorithm be-
comes impractical. The same situation occurs under the parameterization in which ut,d,i =
u(yt,i, xt,i, dt,i; θ) are used as the latent variables in the sampler instead of some or all of the
components of yt,i

2.
The complicated truncation region (7) in drawing the parameter blocks could be avoided if we

use Vt,i = {Vt,d,i = V(st,i, d; θ), d ∈ D} as latent variables in the sampler. However, then some

2 Imai et al. (2005) seem to use this parameterization, but they omit the observed choice optimality constraints (7) in drawing the
parameters. From my communication with Professor Imai, I understand that it will be changed in the next version of their paper.
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extra assumptions on the unobserved state variables are needed so that the joint density of the
data, the latent variables, and the parameters could be specified analytically. A way to achieve this
when an analytical solution to the DP is not available is to assume that the unobserved part of the
state vector includes some serially conditionally independent components that do not affect the
distribution of the future state. Let’s denote them by νt and the other (possibly serially correlated)
ones by εt; so, yt = (νt, εt) and

f(xt+1, νt+1, εt+1|xt, νt, εt, d; θ) = p(νt+1|xt+1, εt+1; θ)p(xt+1, εt+1|xt, εt, d; θ) (8)

Then, the expected value function E{V (st+1; θ)|st, d; θ)} will not depend on the unobservables νt.
The alternative specific value functions Vt,i = {u(νt,i, εt,i, xt,i, d; θ)+βE[V (st+1; θ)|εt,i, xt,i, d; θ)], d ∈
D} will have analytical expressions as functions of νt. Thus, the density of the distribution of
Vt,i|θ, xt,i, εt,i could have an analytical expression in contrast to the case when νt are serially con-
ditionally dependent and the expectation term depends on them.

A simple example of an analytical expression for the density p(Vt,i|θ, xt,i, εt,i) is obtained for
normal iid νt = {νt,d}d∈D and u(νt,i, εt,i, xt,i, d; θ) = u(εt,i, xt,i, d; θ) + νt,d,i. The serially correlated
unobservables εt,i could follow an AR(1) process and also enter the utility function additively:

u(yt,i, xt,i, d; θ) = u(xt,i, d; θ) + νt,d,i + εt,d,i (9)

This formulation could be seen as a simple way of introducing time persistent unobserved hetero-
geneity in the model. The serially correlated unobservables could also have a more meaningful
economic interpretation, e.g. health status, and enter the utility function differently. In general,
the number of components in νt and εt does not have to be the same and they do not have to enter
the utility additively.

The requirement of the presence of the serially conditionally independent unobservables and
the existence of a convenient analytical expression for p(Vt,i|θ, xt,i, εt,i) does restrict the class of the
DDCMs that can be estimated by the proposed method. However, this restriction does not seem
to be strong since the process for the unobservables can still be made quite flexible.

Assuming that a convenient analytical expression for p(Vt,i|θ, xt,i, εt,i) exists, the joint distribu-
tion of the data, the parameters and the latent variables can be decomposed into parts with known
analytical expressions:

p(θ; {dt,i;Vt,i; xt,i; εt,i}Ti
t=1; i = 1, . . . , I) =

p(θ)
I∏

i=1

Ti∏
t=1

p(dt,i|Vt,i)p(Vt,i|xt,i, εt,i; θ)p(xt,i, εt,i|xt−1,i, εt−1,i, dt−1,i; θ) (10)

Under this parameterization, the observed choice optimality constraints

p(dt,i|Vt,i; θ; xt,i; εt,i) = p(dt,i|Vt,i) = 1{Vt,dt,i,i≥Vt,d,i,d∈D}(dt,i,Vt,i) (11)

will not depend on the parameters and will be present only in the blocks for Vt,d,i| . . .. This
could be easily handled since there will be only one constraint for each block Vt,d,i| . . .. Complete
specifications of the Gibbs sampler constructed along these lines are given in Section 5 for the
models used in experiments.
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Further simplification of the Gibbs sampler is possible if we assume that the per-period utility
function is given by (9) and that the unobservables νt,d,i are extreme value iid. Then, Vt,i can be
integrated out analytically as in dynamic multinomial logit models. This slight simplification is
not pursued in this paper.

The Gibbs sampler outlined above requires computing the expected value functions for each
new parameter draw θm from the MCMC iteration m and each observation in the sample:

E[V (st+1; θ
m)|xt,i, ε

m
t,i, d; θm)],∀i, t, d

The following section describes how the approximations of the expected value functions are ob-
tained.

3 Algorithm for solving the DP

For a discussion of methods for solving the DP in (1) and (2) for a given parameter vector θ, see the
literature surveys by Eckstein and Wolpin (1989) and Rust (1994). Models used in the previous
literature were mostly amenable to a significant analytical simplification. For example, in Rust’s
dynamic multinomial logit model, the integration in computing expected value functions could be
performed analytically. Below, I introduce a method of solving the dynamic program suitable for
use in conjunction with the Bayesian estimation of a general dynamic discrete choice model. This
method uses an idea from Imai et al. (2005) of iterating the Bellman equation only once at each
step of the estimation procedure and using information from previous steps to approximate the
expectations in the Bellman equation. However, the way the previous information is used differs
for the two methods. A detailed comparison is given in Section 3.2.

3.1 Algorithm description

In contrast to conventional value function iteration, this algorithm iterates the Bellman equation
only once for each parameter draw. First, I will describe how the DP solving algorithm works
and then how the output of the DP solving algorithm is used to approximate the expected value
functions in the Gibbs sampler.

The DP solving algorithm takes a sequence of parameter draws θm, m = 1, 2, . . . as an input
from the Gibbs sampler, where m denotes the Gibbs sampler iteration. For each θm, the algorithm
generates random states sm,j ∈ S, j = 1, . . . , N̂(m). At each random state, the approximations
of the value functions V m(sm,j; θm) are computed by iterating the Bellman equation once. At
this one iteration of the Bellman equation, the future expected value functions are computed by
importance sampling over value functions V k(sk,j; θk) from previous iterations k < m.

The random states sm,j are generated from a density g(.) > 0 on S. This density g(.) is used
as an importance sampling source density in approximating the expected value functions. The

collection of the random states {sm,j}N̂(m)
j=1 will be referred below as the random grid3. The number

of points in the random grid at iteration m is denoted by N̂(m) and it will be referred below as
the size of the random grid (at iteration m.)

3 Rust (1997) shows that value function iteration on random grids from a uniform distribution breaks the curse of dimensionality
for DDCMs. The Keane and Wolpin (1994) procedure of evaluating expectations only for some grid points and using interpolation for
the rest could be used to increase the speed of the algorithm when the dimension of the state space is large.
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For each point in the current random grid sm,j, j = 1, . . . , N̂(m), the approximation of the
value function V m(sm,j; θm) is computed according to

V m(s; θ) = max
d∈D

{u(s, d; θ) + βÊ(m)[V (s′; θ)|s, d; θ]} (12)

Not all of the previously computed value functions V k(sk,j; θk), k < m are used in importance

sampling for computing Ê(m)[V (s′; θ)|s, d; θ] in (12). In order to converge the algorithm has to
forget the remote past. Thus, at each iteration m, I keep track only of the history of length N(m):

{θk; sk,j, V k(sk,j; θk), j = 1, . . . , N̂(k)}m−1
k=m−N(m). In this history, I find Ñ(m) closest to θ parameter

draws. Only the value functions corresponding to these nearest neighbors are used in importance
sampling. Formally, let {k1, . . . , kÑ(m)} be the iteration numbers of the nearest neighbors of θ in
the current history:

k1 = arg mini∈{m−N(m),...,m−1}||θ−θi||

kj = arg mini∈{m−N(m),...,m−1}\{k1,...,kj−1}||θ−θi||, j = 2, . . . , Ñ(m) (13)

If the arg min returns a multivalued result, I use the lexicographic order for (θi−θ) to decide which
θi is chosen first. If the result of the lexicographic selection is also multivalued: θi = θj, then I
choose θi over θj if i > j. This particular way of resolving the multivaluedness of the arg min
might seem irrelevant for implementing the method in practice; however, it is important for the
proof of the measurability of the supremum of the approximation error, which is necessary for the
uniform convergence results. A reasonable choice for the norm would be ||θ|| =

√
θT Hθθ, where

Hθ is the prior precision for the parameters. Importance sampling is performed as follows:

Ê(m)[V (s′; θ)|s, d; θ]

=

Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(ski,j; θki)
f(ski,j | s, d; θ)/g(ski,j)∑Ñ(m)

r=1

∑N̂(kr)
q=1 f(skr,q | s, d; θ)/g(skr,q)

(14)

=

Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(ski,j; θki)Wki,j,m(s, d, θ) (15)

The target density for importance sampling is the state transition density f(.|s, d; θ). The source
density is the density g(.) from which the random grid on the state space is generated. The
computation of the weights Wki,j,m(s, d, θ) could be simplified if a part of the state vector is
serially independent and its distribution does not depend on the parameters and the other state
variables. Both models used for experiments contain examples of that: the unobservables νt are
Gaussian iid with zero mean and the variance fixed for normalization. In this case the source
density for νt could be the same as the density according to which νt are distributed in the model.
Then, the part of the weight Wki,j,m(s, d, θ) corresponding to νt would be equal to 1. In general,
g(.) should give reasonably high probabilities to all parts of the state space that are likely under
f(.|s, d; θ) with reasonable values of the parameter θ. To reduce the variance of the approximation
of expectations produced by importance sampling4, one should make g(.) relatively high for the
states that result in larger value functions.

4 Importance sampling is used as a variance reduction technique for Monte Carlo simulations
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To obtain the convergence of the DP solution approximations as m → ∞, we have to impose
some obvious restrictions on the size of the random grid N̂(m), the length of the tracked history
N(m), and the number of the nearest neighbors Ñ(m). The length of the tracked history N(m)
has to go to infinity so that when we pick the nearest neighbors from this history they get very
close to the current parameter. For the same reason the number of the nearest neighbors Ñ(m) has
to be small relative to N(m). The length of the forgotten history m−N(m) has to go to infinity so
that early imprecise approximations would not contaminate the future ones. A lower bound on the
number of the random states used in importance sampling [Ñ(m)·mini∈{m−N(m),...,m−1} N̂(i)] should
go to infinity so that the importance sampling approximations of the integrals converge. More
specific assumptions on N(m), Ñ(m), and N̂(m) are made in the current version of the algorithm
convergence proof. They are described along with the assumptions on the model primitives in
Section 3.3, which formally presents convergence results.

After V m(sm,j; θm) are computed, formula (14) is used to obtain the approximations of the
expectations E[V (st+1; θ

m)|xt,i, ε
m
t,i, d; θm)] ∀i, t, d in the Gibbs sampler.

3.2 Comparison with Imai et al. (2005)

Imai et al. (2005) use kernel smoothing over all N(m) previously computed value functions to
approximate the expected value functions. They do not need the importance sampling for the iid
unobserved states; they also generate only one new state at each iteration, N̂(m) = 1,∀m. In
contrast, I use the nearest neighbor (NN) algorithm instead of kernel smoothing. The advantage
of the NN algorithm seems to be twofold. First, it was shown to outperform kernel smoothing in
density estimation when the number of dimensions exceeds four. Thus, it might work better in
practice for the DP solving algorithm as well. Second, the NNs seem to be easier to deal with
mathematically. First of all, to prove the convergence of the DP solution approximations I do not
have to impose the requirement of a uniform upper bound on the Gibbs sampler transition density
(used by Imai et al. (2005) in their Lemma 2), which I have not managed to establish for the actual
Gibbs sampler. Second, the Imai et al. (2005) assumption of finiteness of the observed states space
X can be substituted by compactness. Third, Imai et al. (2005) assumed deterministic transition
for the observed states in the proof and iid unobserved states. With NN approximations, random
state transitions can be used. Imai et al. (2005) proved the convergence in probability for their
DP solution approximations with bounds on the probabilities that are uniform over the parameter
space. For the NN algorithm, I establish a much stronger type of convergence: the complete
uniform convergence. Most importantly, the strong convergence results for the NN approximations
of the DP solutions are shown to imply the convergence of the approximated posterior expectations,
which provides a complete theoretical justification for the proposed Bayesian estimation algorithm.
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3.3 Theoretical results

The following assumptions on the model primitives and the algorithm parameters are made:

Assumption 1. Θ ⊂ RJΘ and S ⊂ RJS are bounded rectangles.

Assumption 2. u(s, d; θ) is bounded, β ∈ (0, 1) is known.

Assumption 3. V (s; θ) is continuous in (θ, s).

Assumption 3 will hold, for example, under the following set of restrictions on the primitives of
the model: Θ and S are compact, u(s, d; θ) is continuous in (s, θ), and f(s′ | s, d; θ) is continuous
in (θ, s, s′) (for a proof see Proposition 4.)

Assumption 4. The density of the state transition f(.|.) and the source importance density g(.)
are bounded above and away from zero, which gives:

inf
θ,s′,s,d

f(s′|s, d; θ)/g(s′) = f > 0

sup
θ,s′,s,d

f(s′|s, d; θ)/g(s′) = f < ∞

Assumption 5. ∃δ̂ > 0 such that P (θm+1 ∈ A|ωm) ≥ δ̂λ(A) for any Borel measurable A ⊂ Θ,
any m, and any feasible history ωm = {ω1, . . . , ωm} where λ is the Lebesgue measure. The history
includes all the parameter and latent variable draws from the Gibbs sampler and all the random
grids from the DP solving algorithm: ωt = {θt, ∆V t, εt; st,j, j = 1, . . . , N̂(t)}.

Assumption 5 means that at each iteration of the algorithm, the parameter draw can get into
any part of Θ. This assumption should be verified for each specific DDCM and the corresponding
parameterization of the Gibbs sampler. The assumption is only a little stronger than standard
conditions for convergence of the Gibbs sampler, see Corollary 4.5.1 in Geweke (2005). Since
a careful practitioner of MCMC would have to establish convergence of the Gibbs sampler, a
verification of Assumption 5 should not require much extra effort. Even if the assumption is
not satisfied for the Gibbs sampler, the DP solving algorithm can be theoretically justified if the
parameter draws from the Gibbs sampler are mixed with parameter draws from a positive on Θ
density for creating the input sequence θ1, θ2, . . . for the DP solving algorithm.

Assumption 6. Let 1 > γ0 > γ1 > γ2 ≥ 0 and N(t) = [tγ1 ], Ñ(t) = [tγ2 ], N̂(t) = [tγ1−γ2 ], and

N̂(0) = 1, where [x] is the integer part of x.

Multiplying the functions of t in Assumption 6 by positive constants will not affect any of the
theoretical results below.

Theorem 1. Under Assumptions 1-6, the approximation to the expected value function in (14)
converges completely (and thus a.s.) to the true value with probability bounds that are uniform
over parameter and state spaces: that is for any ε̃ > 0 there exists a sequence {zt} such that∑∞

t=0 zt < ∞ and for any θ ∈ Θ, s ∈ S, and d ∈ D:

P (|Ê(t)[V (s′; θ) | s, d; θ]− E[V (s′; θ) | s, d; θ]| > ε̃) ≤ zt (16)
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Assumption 4 could be relaxed when a part of the state vector is discrete and the number of
possible discrete states is finite. Let’s denote such discrete part of the state vector by sf . If the
transition for the discrete part of the state is deterministic then Assumption 4 would be required to
hold for each discrete state sf and importance sampling would be performed only for the continuous
part of the state space. If the transition is not deterministic and does not satisfy Assumption 4
then for each discrete part of the state and possible decision d we could introduce a separate space
of possible future states S(sf , d). On each of those spaces we would define an importance sampling
source density g(.|sf , d). Then, the DP solution convergence can also be established if an analog of
Assumption 4 is satisfied for each discrete part of the state sf and decision d and the corresponding
space of possible future states S(sf , d). For a formal statement of these results see Proposition 7.

Theorem 1 gives uniform bounds on the probabilities that the approximation error for fixed
(θ, s) exceeds some positive number. However, the uniform convergence for random functions,
which seems to be easier to apply but harder to establish, is defined differently in the literature
(see Bierens (1994)). A uniform version of Theorem 1 can be obtained given an extra assumption:

Assumption 7. Fix a combination m = {m1, . . . ,mÑ(t)} from {t−N(t), . . . , t− 1}. Let

X(ωt−1, θ, s, d,m) =

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(mi)∑
j=1

(V (smi,j; θ)− E[V (s′; θ) | s, d; θ]))f(smi,j | s, d; θ)/g(smi,j)∑Ñ(t)
r=1

∑N̂(mr)
q=1 f(smr,q | s, d; θ)/g(smr,q)

∣∣∣∣∣∣ (17)

Assume that family of functions {X(ωt−1, θ, s, d,m)}ωt−1 is equicontinuous in (θ, s).

This assumption will be satisfied, for example, if u(s, d; θ) is continuous in (θ, s) on the compact
set Θ × S and f(s′ | s, d; θ) and g(s′) are continuous in (θ, s, s′) and satisfy Assumption 4 (for a
proof see Propositions 4 and 5.)

Theorem 2. Under Assumptions 1-7, the approximation to the expected value function in (14)
converges uniformly and completely to the true value: that is
(i) sups,θ,d |Ê(t)[V (s′; θ) | s, d; θ]− E[V (s′; θ) | s, d; θ]| is measurable,
(ii) for any ε̃ > 0 there exists a sequence {zt} such that

∑∞
t=0 zt < ∞ and

P (sup
s,θ,d

|Ê(t)[V (s′; θ) | s, d; θ]− E[V (s′; θ) | s, d; θ]| > ε̃) ≤ zt (18)

The proof of Theorem 2 is given in Appendix A.2. It is a modification of the proof of Theorem
1, the main steps of which are given below.

Proof. (Theorem 1) Let’s decompose the error of approximation into three parts:∣∣∣Ê(t)[V (s′; θ)|s, d; θ]− E[V (s′; θ) | s, d; θ]
∣∣∣

=

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(ki)∑
j=1

V ki(ski,j; θki)Wki,j,t(s, d, θ)− E[V (s′; θ) | s, d; θ]

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(ki)∑
j=1

V (ski,j; θ)Wki,j,t(s, d, θ)− E[V (s′; θ) | s, d; θ]

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(ki)∑
j=1

(V (ski,j; θki)− V (ski,j; θ))Wki,j,t(s, d, θ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(ki)∑
j=1

(V ki(ski,j; θki)− V (ski,j; θki))Wki,j,t(s, d, θ)

∣∣∣∣∣∣
= At

1(θ, s, d) + At
2(θ, s, d) + At

3(θ, s, d)

≤ max
d

At
1(θ, s, d) + max

d
At

2(θ, s, d) + max
d

At
3(θ, s, d)

= At
1(θ, s) + At

2(θ, s) + At
3(θ, s) (19)

In Lemma 1, I show that At
1(θ, s) converges to zero completely with bounds on probabilities that

are independent of θ and s. The proof uses Hoeffding’s inequality implying a SLLN for bounded
random variables. However, some additional work is required since ski,j do not constitute a random
sample. Using the continuity of the value function V (.), the compactness of the parameter space
Θ, and the assumption that each parameter draw can get into any point in Θ (Assumption 5,)
I show analogous result for At

2(θ, s) in Lemma 2. In Lemma 3, I bound At
3(θ, s) by a weighted

sum of At
1(θ, s) and At

2(θ, s) from previous iterations. Due to very fast convergence of At
1(θ, s)

and At
2(θ, s), At

3(θ, s) also converges to zero completely. Thus, from the three Lemmas the result
follows. Formally, according to Lemmas 1, 2, 3, there exist δ1 > 0, δ2 > 0, δ3 > 0 and T such that
∀θ ∈ Θ, ∀s ∈ S, and ∀t > T :

P (|At
1(θ, s)| > ε̃/3) ≤ e−0.5δ1tγ1

P (|At
2(θ, s)| > ε̃/3) ≤ e−0.5δ2tγ1

P (|At
3(θ, s)| > ε̃/3) ≤ e−δ3tγ0γ1

Combining the above equations gives:

P (|Ê(t)[V (s′; θ) | s, d; θ]− E[V (s′; θ) | s, d; θ]| > ε̃)

≤ P (At
1(θ, s) + At

2(θ, s) + At
3(θ, s) > ε̃)

≤ P (|At
1(θ, s)| > ε̃/3) + P (|At

2(θ, s)| > ε̃/3) + P (|At
3(θ, s)| > ε̃/3)

≤ e−0.5δ1tγ1 + e−0.5δ2tγ1 + e−δ3tγ0γ1 , ∀t > T

= zt, ∀t > T (20)

For t ≤ T set zt = 1. Proposition 10 shows that
∑∞

t=0 zt < ∞. The Lemmas are stated and proved
in Appendix A.

4 Convergence of posterior expectations

In Bayesian analysis, most inference exercises involve computing posterior expectations of some
functions. For example, the posterior mean and the posterior standard deviation of a parameter
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and the posterior probability that a parameter belongs to a set can all be expressed in terms
of posterior expectations. More importantly, the answers to the policy questions that DDCMs
address also take this form. Examples of such policy questions for the models I use in experiments
include: (i) in Gilleskie’s model, investigators might be interested in how the average number of
doctor visits and/or work absences would be affected by changes in the coinsurance rates and
in the proportion of the wage that sick leave replaces; (ii) in Rust’s model, investigators could
care about how the annual number of bus engine replacements would be affected by a change
in the engine replacement cost. Using the uniform complete convergence of the approximations
of the expected value functions, I prove the complete convergence of the approximated posterior
expectations under mild assumptions on a kernel of the posterior distribution.

Assumption 8. Assume that εt,i ∈ E, θ ∈ Θ, and νt,k,i ∈ [−ν, ν], where νt,k,i denotes the kth

component of νt,i. Let the joint posterior distribution of the parameters and the latent variables be
proportional to a product of a continuous function and indicator functions:

p(θ,V , ε; F |d, x) ∝ r(θ,V , ε; F (θ, ε)) · 1Θ(θ) ·

(∏
i,t

1E(εt,i)p(dt,i|Vt,i)

)

·

(∏
i,t,k

1[−ν,ν](qk(θ,Vt,i, εt,i, Ft,i(θ, εt,i)))

)
(21)

where r(θ,V , ε; F ) and qk(θ,Vt,i, εt,i, Ft,i) are continuous in (θ,V , ε, F ), F = {Ft,d,i,∀i, t, d} stands
for a vector of the expected value functions, and Ft,i are the corresponding subvectors. Also, assume
that the level curves of qk(θ,Vt,i, εt,i, Ft,i) corresponding to ν and −ν have zero Lebesgue measure:

λ[(θ,V , ε) : qk(θ,Vt,i, εt,i, Ft,i) = ν] = λ[(θ,V , ε) : qk(θ,Vt,i, εt,i, Ft,i) = −ν] = 0 (22)

This assumption is likely to be satisfied for most models formulated on a bounded state space, in
which truncation is used for distributions with unbounded support. If in the two examples from the
next section the Gaussian distributions were truncated to satisfy the boundedness requirements of
the theorems: νt,d,i, εt,i, and the prior for θ were truncated to bounded sets [−ν, ν], E, and Θ, then
the kernels of the joint distribution for both models would have the form in (21). Condition (22) is
also easy to verify. In both models, qd(θ,Vt,i, εt,i, Ft,i) = ∆u(xt,i, d) + εt,d,i +Ft,d,i(θ, εt,i)−Vt,d,i = ν
defines a continuous function Vt,d,i = ∆u(xt,i, d) + εt,d,i + Ft,d,i(θ, εt,i) − ν. Since the Lebesgue
measure of the graph of a continuous function is zero, (22) will be satisfied.

Theorem 3. Let h(θ,V , ε) be a bounded function. Under Assumptions 1–8, the expectation of
h(θ,V , ε) with respect to the approximated posterior that uses the DP solution approximations

F̂ n from step n of the DP solving algorithm converges completely (and thus a.s.) to the true
posterior expectation of h(θ,V , ε) as n →∞: for any ε > 0 there exists a sequence {zn} such that∑∞

n=0 zn < ∞ and

P

(∣∣∣∣∫ h(θ,V , ε)p(θ,V , ε; F |d, x)d(θ,V , ε)−
∫

h(θ,V , ε)p(θ,V , ε; F̂ n|d, x)d(θ,V , ε)

∣∣∣∣ > ε

)
≤ zn (23)

The proof is given in Appendix A.3. The theorem can be extended to the case when we are
interested in p(W |x, d), where W is called the object of interest, see Geweke (2005); in particular,
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W can denote the answer to a policy question. If the implications of the model for W are specified
by a density p(W |θ,V , ε, d, x), then

p(W |d, x) =

∫
p(W |θ,V , ε, d, x)p(θ,V , ε; F |d, x)d(θ,V , ε) (24)

If p(W |θ,V , ε, d, x) has the same properties as the kernel of p(θ,V , ε; F |d, x) in Assumption 8, then
the theorem holds for p(W |x, d).

5 Experiments

To implement the algorithm I wrote a program in C. The program uses BACC5 interface to libraries
LAPACK, BLAS, and RANLIB for performing matrix operations and random variates generation.
Higher level interpreted languages like Matlab would not provide necessary computation speed
since the algorithm cannot be sufficiently vectorized. As a matter of future work, the algorithm
could be easily parallelized with very significant gains in speed (this is is not necessarily possible or
easy for an arbitrary algorithm.) A short discussion of algorithm parallelization is given in Section
5.2.5.

5.1 Gilleskie’s (1998) model

5.1.1 Setup

For experiments, I used a simplified version of Gilleskie’s model. Only one type of sickness was
included and some parameters were fixed. For the extreme value iid process for taste shocks in
the original model I substituted a serially correlated process.

In the model, an agent can be sick or well. If sick, every period she has the following alternatives
to choose from: d = 1 – work and do not visit a doctor, d = 2 – work and visit a doctor, d = 3
– do not work and do not visit a doctor, d = 4 – do not work and visit a doctor. The observed
state x for a sick agent includes: t – the time since the illness started, vt – the number of doctor
visits since the illness started, and at – the number of work absences accumulated since the illness
started. For a well agent x = (0, 0, 0).

The per-period utility function of a well agent is equal to her income Y , which is known; so,
the marginal utility of consumption when well is fixed to 1. The per-period utility function of an
ill agent is additively separable in the unobserved state variables yt = {yt,d, d ∈ D} and linear in
parameters:

u(xt, yt, d) = z(xt, d) · α + yt,d

where α = (α1, α2, α3, α4), α1 is the disutility of illness, α2 is the direct utility of doctor visit, α3 is
the direct utility of attending work when ill, and α4 is the marginal utility of consumption when
ill. As a function of the observed state and the decision, the 1× 4 matrix z(xt, d) is given by

z(xt, 1) = (1, 0, 1, Y ), z(xt, 2) = (1, 1, 1, Y − C)

z(xt, 3) = (1, 0, 0, Y φ(at + 1)), z(xt, 4) = (1, 1, 0, Y φ(at + 1)− C)

5BACC is an open source software for Bayesian Analysis, Computation, and Communication available at www2.cirano.qc.ca/∼bacc
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where C is a known out-of-pocket cost of a doctor visit; φ(at) is a proportion of the daily wage
that sick leave replaces for the accumulated number of absences at. In the original model φ(at)
depends on some parameters; here, I just fix those.

The unobserved states in the model are interpreted as taste shocks. As was discussed in Section
2, the unobserved state variables should include some serially conditionally independent compo-
nents in addition to the serially correlated ones so that the joint distribution of the data, the
parameters, and the latent variables could be specified analytically. I chose a very simple specifi-
cation of the unobserved states that satisfies this condition:

yt,d = εt,d + νt,d

where νt,d is iid N(0, h−1
ν ), εt,d is N(ρεt−1,d, h

−1
ε ) and ε0,d = 0. The structure of interdependence

between the unobserved state variables could be more general and it is a subject for future work.
The probability of contracting a sickness πs is assumed to be known. The probability of getting

well for a sick agent π(xt, d, η) depends on the parameters η and is given by

π(xt, d, η) =

{
Φ(ηet+1) if t = 1, . . . , T − 1
1 if t = T

(25)

where Φ(.) is a standard normal cdf and

ηet+1 = η1 + η2vt+1 + η3at+1 + η4t (26)

The maximum sickness duration is T . For t < T the transition could be described by a probit
model with an unobserved recovery index RIt:

RIt+1 = ηet+1 + N(0, 1) (27)

Conditional on RIt+1 the transition for xt is deterministic:

xt+1|xt, d, RIt+1 =

{
(0, 0, 0) if RIt+1 > 0 or t = T
x′(xt, d) = (t + 1, at + 1{3,4}(d), vt + 1{2,4}(d)) otherwise

(28)

where x′(.) denotes the future state as a deterministic function of the current state and the decision
given that the agent remains sick.

The life-time value of being well is

Vw = Y + β(1− πs)Vw + βπsEV (x1, y1) (29)

where x1 = (1, 0, 0).
The lifetime value of being sick is

V (xt, yt) = max
d∈D

V(xt, yt, d) (30)

V(xt, yt, d) = u(xt, yt, d) + βπ(xt, d, η)Vw

+ β(1− π(xt, d, η))E[V (x′(xt, d), yt+1)|εt; θ] (31)
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5.1.2 Gibbs sampler

In the model formulation above, the assumed distributions for the unobserved states have un-
bounded support. It is also more convenient to use distributions with unbounded support in
constructing the Gibbs sampler. To reconcile this with the theory, which requires the parame-
ters and the states to be in bounded spaces, we could assume the existence of bounds for all the
parameters and the states. If these bounds are large enough, then the Gibbs sampler that takes
them into account would produce the same results as the Gibbs sampler that does not. Thus, not
to clutter the notation I present the Gibbs sampler assuming no bounds. For an example of the
Gibbs sampler that imposes the bounds see the Gibbs sampler for Rust’s model in Section 5.2.3.

For each individual i, one illness episode of length Ti is observed. The observables in the
model are {xt,i}Ti+1

t=1 and {dt,i}Ti
t=1 for i = 1, . . . , I. The parameters are θ = (α, η, ρ, hε); hν is

fixed for normalization. From experiments with the DP solution (Section 5.1.4,) I find that the

approximation error for the expected value functions Êm[V (s′; θ)|s, d; θ] is much bigger than for

the differences of expectations Êm[V (s′; θ)|s, d1; θ] − Êm[V (s′; θ)|s, d2; θ]. Thus, instead of using
Vt,d,i as latent variables in the estimation procedure I use the following latent variables:

∆Vt,d,i = Vt,d,i − z(xt,i, d)α− βE[V (s′; θ)|εt,i, xt,i, d; θ]

= ∆zt,d,iα + εt,d,i + νt,d,i + Ft,d,i(θ, εt,i) (32)

where d is some fixed alternative in D, ∆zt,d,i = z(xt,i, d)− z(xt,i, d), and

Ft,d,i(θ, εt,i) = βE[V (s′; θ)|εt,i, xt,i, d; θ]− βE[V (s′; θ)|εt,i, xt,i, d; θ] (33)

Note that ∆Vt,d,i is not a difference of alternative specific value functions. If it were then the Gibbs
sampler blocks for ∆Vt,d,i would be more complicated.

In addition, ε = {εt,d,i}Ti
t=1 and {RIt,i}Ti+1

t=1 are also treated as latent variables. The joint distri-
bution of the data, the parameters, and the latent variables is

p(θ; {dt,i; ∆Vt,1,i, . . . , ∆Vt,D,i; εt,1,i, . . . , εt,D,i}Ti
t=1; {xt,i; RIt,i}Ti+1

t=1 ; i = 1, . . . , I) =

p(θ)
I∏

i=1

Ti∏
t=1

[p(xt+1,i|xt,i; dt,i; RIt+1,i)p(RIt+1,i|xt,i; dt,i; η)

p(dt,i|∆Vt,1,i, . . . , ∆Vt,D,i)
D∏

d=1

p(∆Vt,d,i|xt,i, εt,i; θ)p(εt,d,i|εt−1,d,i, ρ, hε)] (34)

where p(θ) is a prior density for parameters; x0,i = ∅; p(dt,i|∆Vt,1,i, . . . ,Vt,D,i) is an indicator
function, which is equal to 1 when ∆Vt,dt,i,i ≥ ∆Vt,d,i,∀d.

p(∆Vt,d,i|xt,i, εt,i; θ) ∝ exp {−0.5hν(∆Vt,d,i −∆zt,d,iα− εt,d,i − Ft,d,i(θ, εt,i))
2}

p(εt,d,i|εt−1,d,i, θ) ∝ h−1/2
ε exp {−0.5hε(εt,d,i − ρεt−1,d,i)

2}
Gibbs sampler blocks
The block for ∆Vt,d,i| . . . is N(∆zt,d,iα+εt,d,i+Ft,d,i(θ, εt,i), hν) truncated to ∆Vt,dt,i,i ≥ ∆Vt,d̃,i∀d̃ ∈

D. The block for RIt+1,i| . . . is N(et+1,iη, 1) truncated to (0,∞) if xt+1,i = (0, 0, 0) and to (−∞, 0)
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otherwise, where et+1,i is a vector depending on xt,i and dt,i that was defined in (26). The density
for εt,d,i| . . . block:

p(εt,d,i| . . .) ∝ exp {−0.5hν(∆Vt,d,i − Ft,d,i(θ, εt,i)−∆zt,d,iα− εt,d,i)
2} (35)

× exp {−0.5hν

∑
d̃6=d

(∆Vt,d̃,i − Ft,d̃,i(θ, εt,i)−∆zt,d,iα− εt,d̃,i)
2} (36)

× exp{−0.5hε(εt+1,d,i − ρεt,d,i)
2 − 0.5hε(εt,d,i − ρεt−1,d,i)

2} (37)

To draw from this density I use a Metropolis step with a normal transition density proportional to
(37). Blocks for εt,d,i with t = 0 and t = Ti will be similar. Blocks for α| . . ., η| . . ., ρ| . . ., hε| . . . are
drawn by the Metropolis-Hastings (MH) random walk algorithm since an analytical expression for
the difference in expected value functions Ft,d,i(θ, ε) is unknown and it could only be approximated
numerically. The proposal density of the MH random walk algorithm is normal with mean equal to
the current parameter draw and a fixed variance. The variances are chosen so that the acceptance
probability would be between 0.2−0.8. If a vector of parameters is drawn as one block by the MH
random walk it is important to make the variances for all the components of the vector as large
as possible keeping the acceptance rate reasonable. Nevertheless, reasonable acceptance rates do
not guarantee fast convergence. While drawing vector α by the MH as one block worked well,
drawing η as one block resulted in too slow mixing of the chain. Thus, on every other iteration
the components of η are drawn one at a time. This significantly accelerated convergence. For
larger sample sizes (I = 1000,) acceptance rates in the range 0.2-0.3 worked the best. For Rust’s
model, I explore an alternative to the random walk chain, in which the MH transition densities
are proportional to the familiar parts of the posterior. This alternative seems to work remarkably
well for the state transition parameters that are strongly identified by the data (see Section 5.2.)

5.1.3 Approximating the value functions

The sequential structure of the model was exploited in computing the approximations of the
value functions. In experiments, only one nearest neighbor was picked for approximating the

expectations: Ñ(m) = 1. First, a random grid {ym,j = (νm,j, εm,j)}N̂(m)
j=1 is generated on the

continuous part of the state space: νm,j
d ∼ N(0, h−1

ν ) and εm,j ∼ g(.), where g(.) is normal with
zero mean and the precision equal to the prior mean of hε. The approximations of the value
functions for each x ∈ X and ym,j, j = 1, . . . , N̂(m) are computed as follows:

V m(x, ym,j; θm) = max
d∈D

u(x, ym,j, d, αm)

+ βπ(x, d, ηm)V k1
w + β(1− π(x, d, ηm))×

×
N̂(m)∑
i=1

V m(x′(x, d), ym,i; θm)
f(εm,i | εm,j; θm)/g(εm,i)∑N̂(m)

r=1 f(εm,r | εm,j; θm)/g(εm,r)
(38)

where f(.|ε; θ) is a N(ρε, h−1
ε ) density. Note that νm,j

d have the same distribution as νt,d in the
model. Thus, the corresponding density values cancel each other in the numerator and denominator
of the importance sampling weight. The approximations of the value functions with larger t are
computed first. That is why only the value functions already updated at the current iteration
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m, V m(.; θm) (as opposed to V k1(.; θk1),) are used for approximating the expectations in (38).
Note, that for x with t = T , the recovery is certain, π(x, d, ηm) = 1, and only V k1

w is required for
computing the expectation. This procedure is similar to the backward induction or the Gauss-
Seidel method.

After (38), the approximation of the value of being well is computed.

V m
w = [1/(1− β(1− πs))][Y +

+ βπs

N̂(m)∑
i=1

V m((1, 0, 0), ym,i; θm)
f(εm,i|0; θm)/g(εm,i)∑N̂(m)

r=1 f(εm,r|0; θm)/g(εm,r)
] (39)

Experiments with a sequence of θm, which was drawn from a prior distribution one component
of θ at a time, showed that performing only one Bellman equation iteration might not provide a
sufficient approximation precision for feasible run times. For N(m) = 1000 and N̂(m) = 100 the
average approximation error for Ft,d,i(θ, ε) was three times as large as the standard deviation of
the taste shocks h−.5

ε . The approximation error for the kernel smoothing algorithm of Imai et al.
(2005) was on average twice as large as for the nearest neighbors algorithm6.

The approximation precision could be improved by repeating (38) and (39) several times. For
that purpose we can separate iterations of the Gibbs sampler and the DP solving algorithm. For
each iteration m of the Gibbs sampler we perform several iterations of the DP solving algorithm
keeping the parameter vector fixed at θm. Only the approximations of the value functions obtained
on the last repetition are used for approximating the expectations in the Gibbs sampler at iteration
m. Note that for Ñ(m) = 1 this procedure could still fit the proposed theoretical framework with
the modification that at each iteration of the DP solving algorithm the parameter vector is drawn
with a small probability p from a density p(θ) > 0 on Θ or, otherwise, taken to be the current Gibbs
sampler draw θm with a probability 1− p. This augmentation would guarantee that Assumption
5 holds.

The value function iteration algorithm has linear convergence rates and convergence may slow
down significantly near the fixed point. That is why employing the following non-linear optimiza-
tion procedure might help in obtaining a good approximation precision at reduced computational
costs. Performing one iteration of the DP solving algorithm (computations in (38) and (39)) for

the fixed parameter vector θm and the random grid {ym,j}N̂(m)
j=1 could be seen as a mapping that

takes Vw as an input and updates it. Iterating this mapping produces a sequence of Vw’s that con-
verges monotonically. Taking this into account improves the performance. Appendix B presents
a flowchart of a direct search procedure for finding the mapping fixed point V m

w . This procedure
is used in the estimation experiments presented below. In these experiments, starting from the
nearest neighbor, the procedure required only 2-4 passages over (38) and (39) to find the fixed

point V m
w or, equivalently, to solve the DP for θm on the random grid {ym,j}N̂(m)

j=1 .
Since the Gibbs sampler changes only one or few components of the parameter vector at a time,

the previous parameter draw θm−1 turned out to be the nearest neighbor of the current parameter
θm in most cases. Taking advantage of this observation and keeping track only of one previous
iteration saves a significant amount of computer memory.

6Imai et al. (2005) do not provide numerical results characterizing the accuracy of their DP solution approximations. It might be
possible to improve the results obtained here for the kernel smoothing algorithm by varying the kernel smoothing band width.
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In the Gibbs sampler, the approximations of the differences in the expectations are computed
as follows:

Ft,d,i(θ
m, εm

t,i) =

β(π(xt,i, d, ηm)− π(xt,i, d, ηm))V m
w

+ β(1− π(xt,i, d, ηm))

N̂(m)∑
i=1

V m(x′(xt,i, d), ym,i; θm)
f(εm,i | εm

t,i; θ
m)/g(εm,i)∑N̂(m)

r=1 f(εm,r | εm
t,i; θ

m)/g(εm,r)
(40)

− β(1− π(xt,i, d, ηm))

N̂(m)∑
i=1

V m(x′(xt,i, d), ym,i; θm)
f(εm,i|εm

t,i; θ
m)/g(εm,i)∑N̂(m)

r=1 f(εm,r|εm
t,i; θ

m)/g(εm,r)

5.1.4 Experiments with the DP solutions

A simulation study was conducted to assess the quality of the DP solution approximations. The
study explores how the randomness of the grid affects the approximations for fixed parameters and
how these effects change with the random grid size. The parameter values for this experiment are
the same as for the estimation experiments described below in Section 5.1.5. First, I generated

1000 random grids {ym,j}N̂
j=1, m = 1, . . . , 1000. Then, for each random grid m, I solved the DP as

described in the previous section and computed the approximation of the value of being well V m
w and

the approximation of the difference in expectations Ê(m)[V (s′; θ)|s, d1; θ] − Ê(m)[V (s′; θ)|s, d2; θ].

The approximation V m
w is a measurable function of the random grid realization {ym,j}N̂

j=1 and thus
itself is a random variable. Using kernel smoothing, I estimated densities of those approximations.
The estimated densities for N̂ = 100, 500, 1000 are presented in Figures 1 and 2.

Figure 1: Estimated densities of Vw. The tightest density corresponds to N̂ = 1000, the most widespread to
N̂ = 100. The dashed lines are fitted normal densities.
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Figure 2: Estimated densities of Ê(m)[V (s′; θ)|s, d1; θ]− Ê(m)[V (s′; θ)|s, d2; θ]. The tightest density corresponds to
N̂ = 1000, the most widespread to N̂ = 100. The dashed lines are fitted normal densities.

Visual inspection of the figures suggests that the approximations converge as the number of the
points in the random grid increases. The mean of the distribution seems to be the same for
N̂ = 100, 500, 1000. The variances are roughly proportional to N̂−1. The densities are close to
the fitted normal densities. All this hints that an analog to a CLT might hold for this problem.
Comparison of the two figures shows that the maximal approximation error for the expected
value function is larger by two orders of magnitude than the maximal approximation error for the
difference in the expected value functions. This result seems to have a simple intuitive explanation.
An approximal DP solution computed on a random grid could be far from the actual solution.
However, the errors resulting from discretization and numerical integration very similarly affect
the approximations of the future expected value functions for the same current state but different
decisions. It probably happens because numerical integration over the future states is performed
on the same random grid no matter which alternative is chosen in the current period. Thus,
the approximations of the expected value functions have very high positive correlation and their
variances are of similar magnitude. This results in a small variance for their difference. As I
mentioned earlier, these findings motivate the choice of the Gibbs sampler parameterization, in
which only the differences of the expected value functions are used.

Comparing the approximation precision with the magnitude of the taste shocks in the model
seems to be a reasonable way of judging the approximation quality. The maximal approximation
error for the differences in the expected value functions for N̂ = 100 was smaller than the standard
deviation of the taste shocks h−1

ν = 10 by a factor of 15− 30.
To further verify that the method is implemented correctly I conducted a similar simulation

study using the extreme value iid unobservables instead of the serially correlated unobservables.
The results were analogous to the ones reported in the figures. The actual DP solution for the iid
extreme value unobservables can be easily computed with a high precision as described in Rust
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(1994). As expected, the exact solutions were right at the means of the distributions obtained
from the simulation study.

These experiments also suggest an improvement in the algorithm performance. Solving the DP
on several small random grids and combining the results seems to be a very efficient alternative to
using one large grid. I separate the series of the approximations of Vw for N̂ = 100 into batches
of size 10. For each batch I compute the mean and then use these means in kernel smoothing
to obtain the estimated density for such approximations of Vw. The resulting density practically
coincide with the density obtained for N̂ = 1000 and no batching. Thus, the approximation
precision for these procedures is about the same. The time of iterating the Bellman equation on
a grid of size N̂ is proportional to N̂2. Therefore, the time required for iterating the Bellman
equation on a grid of size N̂ = 100 for ten different grids will be smaller by a factor of 10 than the
time required for iterating the Bellman equation on one grid of size N̂ = 1000. These experimental
results are intriguing. Investigating theoretical properties of this improved procedure, e.g. deriving
complexity bounds, seems to be of great interest and is a subject of future work. This improvement
has not been incorporated into the estimation experiments in this paper. However, I employ it in
Norets (2006) that uses artificial neural networks to approximate the expected value function as a
function of the parameters θ and the state variables.

5.1.5 Estimation results for artificial datasets

The generated sample contained I = 100 observations. The maximal length of an illness episode
was T = 5, the standard deviation of the uncorrelated taste shocks was h−0.5

ν = 10, and the time
discount factor was β = 0.9997. The size of the random grid for solving the DP was equal to
N̂ = 100, and the number of the picked nearest neighbors was equal to Ñ = 1. Data generation
and each iteration of the estimation procedure use the same random grid for solving the DP
(Proposition 6 justifies using the same random grid at each iteration of the algorithm if the number
of the nearest neighbors is constant.) Experiments with different grids are conducted on real data
for the Rust (1987)’s model. The approximation error for the differences in the expected value
functions was smaller than the standard deviation of the taste shocks by a factor of 15 − 30.
Under these settings, it takes about 30 seconds to produce 100 draws from the posterior on a 2002
vintage PC. The priors are specified together with estimation results in Table 1. The data and
the parameters that were fixed: Y = 98, C = 30, πs = 0.0034, φ(a) = 1/(1 + exp(−20 + 5a)), and
d = 4.

The parameter values used for data simulation, the priors and the posteriors are also presented
graphically. The parameter values for data simulation were chosen so that all the decisions and most
of the possible observed states x ∈ X were present in the simulated data. The chain convergence is
checked by comparing the estimation results for several different posterior simulator runs. Figure 3
gives estimated posterior marginal densities of the parameters for five different posterior simulator
runs that were started from random initial values. The length of the runs was 300000 − 1000000
draws. The posterior densities estimated by kernel smoothing seem to converge to the same
stationary distributions for different posterior runs.

As can be seen from the figure, α and ρ converge much faster than η and hε. Overall, the amount
of serial correlation in the sampler draws is quite large. This is typical for the Metropolis-Hastings
random walk algorithm. The situation might be complicated here by the presence of a lot of latent
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variables and by the sensitivity of the expected value functions to changes in parameters. Thus,
long simulator runs are necessary to estimate the posterior distributions with sufficient precision.
Also, some experimental work is required for choosing the variance of the transition densities for
the MH random walk.

Figure 3: Estimated posterior densities of (a) α1, (b) α2, (c) α3, (d) α4, (e) ρ, (f) η1, (g) η2, (h) η3, (k) η4, (l)
h
−1/2
ε . The dashed lines are prior densities. The vertical lines show the actual parameter values.

Table 1: Estimation results for artificial data

Parameter True value Posterior Prior
Mean SD NSE

α1 -1000 -1225.13 458.2571 14.9307 N(−1000, 3333.32)
α2 -50 -0.59441 174.9583 5.6386 N(−50, 333.32)
α3 90 87.298 120.5221 5.0465 N(90, 333.32)
α4 0.2 1.939 5.8549 0.19244 N(0.2, 16.72)
ρ 0.7 0.66199 0.13683 0.0068441 N(0.5, 10002), s.t. [0, 0.99]
η1 -4.5 -4.5983 0.31074 0.047862 N(−4.5, 0.672)
η2 0.1 0.097667 0.019181 0.0036438 N(0.1, 0.0672)
η3 0.1 0.13571 0.034763 0.01006 N(0.1, 0.0672)
η4 1.5 1.4872 0.1112 0.018664 N(1.5, 0.672)

h−0.5
ε 20 19.4959 5.2168 0.67004 800χ2

2, mean=sd=20

Another apparent feature of the estimation results is that the uncertainty about the parameter
values is huge. One reason being that the model is not very parsimonious and the parameters are
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weakly identified. Changes in different parameters might lead to similar changes in the observables.
This also creates difficulties for classical maximum likelihood estimation of dynamic discrete choice
models. The standard errors of the parameter estimates are often large and difficult to compute
precisely. In contrast to the classical approach, Bayesian inference takes into account the uncer-
tainty about the parameters and this advantage seems to be important for dynamic discrete choice
models. As will be seen in the experiments with Rust’s model, an increase in the sample size does
not necessarily cure the problem of weak identification.

5.1.6 Two stage estimation

The following experiment is motivated by the two stage classical estimation procedure in which
the state transition parameters η are estimated first from the partial likelihood and then these
estimates are used in the estimation of the rest of the parameters. The experiment below could
give some clues on how the full maximum likelihood estimation results would differ from the ones
of the two stage procedure. Using the priors and the artificial dataset from the experiments in
the previous section, I estimate η by a standard probit model with the assumption that xt,i are
fixed. The results of this procedure are contrasted with the full model estimation results in Figure
4. Then, fixing η at the posterior mean from the probit estimation, I estimate the rest of the
parameters. The results are compared with the full model in Figure 5. As can be seen from Figure
4, the posterior standard deviations for η are significantly smaller for the full model estimation.
Thus, there seem to be significant efficiency gains from the full model estimation. Surprisingly, the
estimation results for the rest of the parameters are only slightly affected by fixing η. The “second
stage posteriors”, depicted in Figure 5, noticeably differ from the full model posteriors only for α1

and h
−1/2
ε .

Figure 4: Posterior densities of η: (a) η1, (b) η2, (c) η3, (d) η4. The solid lines show the densities estimated by
probit, the dotted lines by the full model. The vertical lines show the actual parameter values.

Overall, this experiment does not seem to suggest that the two stage classical estimation procedure
would produce unreasonable results for this model and sample size. However, the standard errors
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of the parameters might be considerably affected.

Figure 5: Posterior densities of α, ρ, and h
−1/2
ε : (a) α1, (b) α2, (c) α3, (d) α4, (e) ρ, (f) h

−1/2
ε . The solid lines

show the densities estimated with fixed η (two simulator runs,) the dotted lines by the full model. The vertical
lines show the actual parameter values.

5.1.7 Joint distribution tests

To verify that the Gibbs sampler is implemented correctly I employ joint distribution tests devel-
oped in Geweke (2004). The test works as follows. First, start from the joint prior distribution
for the observables and the unobservables: θ0 ∼ p(θ) and ∆V0, ε0, x0, RI0, d0 ∼ p(data|θ0). Then,

generate a draw from the posterior simulator ∆Ṽ1, ε̃1, R̃I
1
, θ1 and generate the observed and the

augmented data from the data simulator ∆V1, ε1, x1, RI1, d1 ∼ p(data|θ1) and continue repeating
these two steps. The invariant stationary distribution of this Markov chain is the joint prior dis-
tribution of the observables and the unobservables. This successive conditional simulator uses the
posterior and data simulators. If the posterior and data simulators are derived and implemented
correctly, then, for example, the sample mean of θm converges to the prior mean of θ, which could
be tested formally using a central limit theorem.

Using smaller size of the artificial dataset results in better mixing of the chain in the successive
conditional simulator. In this experiment I = 2. Tighter priors also increase the speed of conver-
gence. Some experimental work was required to choose the variances for the Metropolis-Hastings
transition densities. The acceptance rates were in 0.2-0.7 interval.

The test uses 10000 draws from the prior simulator and 75000 draws from the successive con-
ditional simulator. The hypothesis of means equality was not rejected by the standard means
equality test performed for the parameters and their squares. The test p-values are reported in
Table 2. The numerical standard errors were computed by batching with a first order time series
correction.7 These tests are useful not only at the program debugging stage, but also help to

7 The sequence of the draws is divided into batches. It is assumed that the means of the batches follow an AR(1) process and the
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catch some conceptual errors in the posterior simulator implementation: e.g., in drawing ρ by the
MH random walk a truncation constant was not taken into account in computing the acceptance
probability (prior for ρ is truncated to [0, 0.99].)

Table 2: Joint distribution test

Parameter Prior simulator Successive conditional Means equality
mean simulator mean p-value

α1 -999.99 -1000 0.25
α2 -49.997 -50.03 0.42
α3 90.009 89.946 0.10
α4 0.20014 0.19997 0.67
ρ 0.50209 0.50122 0.60
η1 -4.5033 -4.4989 0.24
η2 0.099921 0.099911 0.99
η3 0.099814 0.10013 0.63
η4 1.4989 1.5034 0.72

h−.5
ε 20.306 20.296 0.73

The results of the tests are also presented graphically in Figure 6. The solid lines are the densities
of the parameter draws from the successive conditional simulator estimated by kernel smoothing.
These densities practically coincide with the dashed lines that show the prior densities.

Figure 6: Joint distribution tests: (a) α1, (b) α2, (c) α3, (d) α4, (e) ρ, (f) η1, (g) η2, (h) η3, (k) η4, (l) h
−1/2
ε .

corresponding standard error is computed.
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5.2 Rust’s (1987) model

5.2.1 Setup

Rust (1987) used a binary choice model of optimal bus engine replacement to demonstrate his
dynamic logit model. In this model a maintenance superintendent of a bus transportation company
decides every time period whether to replace a bus engine. The observed state variable is the bus
mileage xt since the last engine replacement. The control variable dt takes on two values: 2 if the
engine is replaced at t and 1 otherwise. The per-period utility function of the superintendent is
the negative of per-period costs:

u(xt, εt, νt, dt; α) =

{
α1xt + εt if dt = 1
α2 + νt if dt = 2

(41)

where εt and νt are the unobserved state variables, α1 is the negative of per-period maintenance
costs per unit of mileage, α2 is the negative of the costs of engine replacement. Rust assumes that
εt and νt are extreme value iid. I assume νt is iid N(0, h−1

ν ) truncated to [−ν, ν], εt is N(ρεt−1, h
−1
ε )

truncated to E = [−ε, ε], and ε0 = 0. The bus mileage since the last replacement is discretized
into M intervals X = {1, . . . ,M}. The observed state xt evolves according to

P (xt+1|xt, dt; η) =

{
π(xt+1 − xt; η) if dt = 1
π(xt+1 − 1; η) if dt = 2

(42)

and

π(∆x; η) =


η1 if ∆x = 0
η2 if ∆x = 1
η3 if ∆x = 2
0 if ∆x ≥ 3

(43)

Rust assumes that if the mileage reaches the state M it stays in this state with probability 1. I
instead assume that the engine is replaced at t if xt exceeds M − 1, which slightly simplifies the
DP solution. In the recursive formulation, the life-time utility for xt < M is given by

V (xt, εt, νt; θ) = max{α1xt + εt + β

3∑
k=1

ηkE[V (xt + k − 1, ε′, ν ′; θ)|εt; θ], α2 + νt + βEV2(θ)} (44)

where

EV2(θ) =
3∑

k=1

ηkE[V (k, ε′, ν ′; θ)|0; θ] (45)

E[V (xt+1, ε
′, ν ′; θ)|εt; θ] =

∫
V (xt+1, ε

′, ν ′; θ)dP (ε′, ν ′|εt; θ) (46)

For xt ≥ M :

V (xt, εt, νt; θ) = α2 + νt + βEV2(θ) (47)
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5.2.2 Approximating value functions

The algorithm of approximating the value functions is similar to the one for Gilleskie’s model,
where the role of Vw is played by EV2. Only one nearest neighbor is used, Ñ(m) = 1. The

random grid {ym,j = (νm,j, εm,j)}N̂(m)
j=1 is generated from a normal distribution: νm,j

d ∼ N(0, h−1
ν )

and εm,j ∼ g(.), where g(.) is a normal density. First, one iteration of the DP solving algorithm is
described as it should be performed according to the theory. Then, improvements in the algorithm
performance are discussed.

An iteration of the DP solving algorithm is performed as follows. For a given initial EV k1
2 (θk1)

corresponding to the nearest neighbor, Bellman equations (44) are iterated for x in descending

order and j = 1, . . . , N̂(m):

V m(x, ym,j; θm) = max{αm
1 x + εm,j + β

3∑
k=1

ηkÊ
m[V (x + k − 1, y′; θm)|ym,j; θm],

αm
2 + νm,j + βEV k1

2 (θk1)} (48)

where

Êm[V (x + k − 1, y′; θm)|ym,j; θm] =

N̂(k1)∑
r=1

V k1(x + k − 1, yk1,r; θk1)W (εk1,r, εk1,j, θk1) (49)

Note that for k > 1 the value functions V m(x+k−1, ym,r; θm) have already been computed. Thus,
for k > 1, k1 will be equal to m in (49). Next, EV m

2 (θm) is computed:

EV m
2 (θm) =

3∑
k=1

ηk

N̂(m)∑
r=1

V m(k, ym,r; θm)W (εm,r, 0, θm) (50)

In practice, iterating (48) several times in a row for one x before going to the next significantly
improves the convergence speed. It happens because the expression for the value function at the
mileage x includes the expected value function at the same x. If Bellman equation (48) is iterated
several times the approximation error in V m(x, ym,j; θm) becomes smaller and affects the value
functions for {1, . . . , x − 1} much less. Using only already updated V m(x, ym,j; θm) in computing
the expectations further improves the performance. Thus, when (48) is iterated first time for a
given x the expectations for k = 1 are approximated as follows:

Êm[V (x + k − 1, y′; θm)|ym,j; θm] =

j−1∑
r=1

V (x, ym,r; θm)W (ym,r, ym,j, θm) (51)

For j = 1, Êm[V (x + 0, y′; θm)|ym,1; θm] is a solution of the following equation:

Êm[V (x + 0, y′; θm)|ym,1; θm] = max{αm
2 + βEV k1

2 (θk1),

αm
1 x + β(ηm

1 Êm[V (x + 0, y′; θm)|ym,1; θm] (52)

+ηm
2 Êm[V (x + 1, y′; θm)|ym,1; θm] + ηm

3 Êm[V (x + 2, y′; θm)|ym,1; θm])} (53)
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This equation is obtained by interchanging the places of the expectation and the max in the
Bellman equation. After the first iteration on (48) for a given x, all the expectations are computed
according to (49) on the subsequent iterations.

The procedure described in the two preceeding paragraphs can be seen as a mapping taking
EV2 as an input and updating it. The fixed point of this mapping can be found by a direct
search procedure similar to the one described in Appendix B. For more details on this, see also a
discussion of the DP solution approximation for Gilleskie’s model in Section 5.1.3.

5.2.3 Gibbs sampler

Each bus i is observed over Ti time periods: {xt,i, dt,i}Ti
t=1 for i = 1, . . . , I. The parameters are

θ = (α, η, ρ, hε); hν is fixed for normalization. The latent variables are {∆Vt,i, εt,i}Ti
t=1 i = 1, . . . , I.

∆Vt,i = xt,iα1 − α2 + εt,i − νt,i + Ft,i(θ, εt,i)

where

Ft,i(θ, ε) = β
3∑

j=1

ηj(E[V (xt,i + j − 1, ε′, ν ′; θ)|ε; θ]− EV2(θ))

The compact space for parameters Θ is defined as follows: αi ∈ [−α, α], ρ ∈ [−ρ, ρ], hε ∈ [hl
ε, h

r
ε ],

and η belongs to a three dimensional simplex. The joint distribution of the data, the parameters,
and the latent variables is

p(θ; {xt,i, dt,i; ∆Vt,i, εt,i}Ti
t=1; i = 1, . . . , I) =

p(θ)
I∏

i=1

Ti∏
t=1

[p(dt,i|∆Vt,i)p(∆Vt,i|xt,i, εt,i; θ)p(xt,i|xt−1,i; dt−1,i; η)p(εt,i|εt−1,i, ρ, hε)] (54)

where p(θ) is a prior density for the parameters; p(xt,i|xt−1,i; dt−1,i; η) is given in (42) and
p(x1,i|x0,i; d0,i; η) = 1{1}(x1,i)—all the buses start with a new engine;

p(dt,i|∆Vt,i) =


1, if dt,i = 1, ∆Vt,i ≥ 0
0, if dt,i = 1, ∆Vt,i < 0
1, if dt,i = 2, ∆Vt,i ≤ 0
0, if dt,i = 2, ∆Vt,i > 0

(55)

p(∆Vt,i|xt,i, εt,i; θ) = exp {−0.5hν(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2} (56)

·1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]) (57)

· h0.5
ν√

2π[Φ(νh0.5
ν )− Φ(−νh0.5

ν )]

p(εt,i|εt−1,i, θ) =
h

1/2
ε exp {−0.5hε(εt,i − ρεt−1,i)

2}√
2π[Φ([ε− ρεt−1,i]h0.5

ε )− Φ([−ε− ρεt−1,i]h0.5
ε )]

1E(εt,i) (58)

Gibbs sampler blocks
The Gibbs sampler blocks for ∆Vt,i| . . . will have a normal truncated distribution proportional

to (56) and (57), and also truncated to R+ if dt,i = 1 or to R− otherwise. An algorithm from
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Geweke (1991) is used to simulate efficiently from the normal distribution truncated to R+ (or
R−.) Acceptance sampling handles the truncation in (57).

The density for εt,i| . . . is proportional to

p(εt,i| . . .) ∝ exp {−0.5hν(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2}

Φ([ε− ρεt−1,i]h0.5
ε )− Φ([−ε− ρεt−1,i]h0.5

ε )

· 1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

· exp{−0.5hε(εt+1,i − ρεt,i)
2 − 0.5hε(εt,i − ρεt−1,i)

2} · 1E(εt,i) (59)

Draws from this density are obtained from a Metropolis step with a normal truncated transition
density proportional to (59). The blocks for εt,i with t = 0 and t = Ti will be similar.

Assuming a normal prior N(ρ, hρ) truncated to [−ρ, ρ],

p(ρ| . . .) ∝
exp {−0.5hν

∑
i,t(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

2}∏
i,t Φ([ε− ρεt−1,i]h0.5

ε )− Φ([−ε− ρεt−1,i]h0.5
ε )

·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

· exp{−0.5hρ(ρ− ρ)2} · 1[−ρ,ρ](ρ) (60)

where hρ = hρ +
∑

i

∑Ti

t=2 ε2
t−1,i and ρ = h

−1

ρ (hρρ+hε

∑
i

∑Ti

t=2 εt,iεt−1,i). To draw from this density
I use a Metropolis step with a normal truncated transition density proportional to (60).

Assuming a gamma prior s2hε ∼ χ2(df), truncated to [hl
ε, h

r
ε ],

p(hε| . . .) ∝
exp {−0.5hν

∑
i,t(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

2}∏
i,t Φ([ε− ρεt−1,i]h0.5

ε )− Φ([−ε− ρεt−1,i]h0.5
ε )

·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

· h(df−2)/2
ε exp {−0.5s2hε} · 1[hl

ε,h
r
ε ]
(hε) (61)

where df = df +
∑

i Ti and s2 = s2 +
∑

i

(∑Ti

t=2(εt,i − ρεt−1,i)
2 + ε2

1,i

)
. For this block, I employ a

Metropolis step with a truncated gamma transition density proportional to (61); draws from this
density are obtained by acceptance sampling.

Assuming a Dirichlet prior with parameters (a1, a2, a3),

p(η| . . .) ∝ exp {−0.5hν

∑
i,t

(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2}

·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

·
3∏

j=1

η
nj+aj−1
j (62)

30



where nj =
∑

i

∑Ti

t=2 1{j−1}(xt,i − xt−1,i). A Metropolis step with a Dirichlet transition density
proportional to (62) is used in this block.

p(α| . . .) ∝ p(α) exp {−0.5hν

∑
i,t

(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2}

· 1[−α,α]×[−α,α](α) ·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

To draw from this density I use the Metropolis-Hastings random walk algorithm. The proposal
density is normal truncated to [−α, α]× [−α, α] with a mean equal to the current parameter draw
and a fixed variance. The variance matrix is chosen so that the acceptance probability would be
between 0.2− 0.3.

5.2.4 Uniform ergodicity of the Gibbs sampler

The draws from the Gibbs sampler are used for approximating posterior expectations by sample
averages. Under certain conditions, the sample averages converge almost surely to the posterior
expectations and a corresponding central limit theorem holds. Uniform ergodicity of the Gibbs
sampler—a sufficient condition for these results (see Tierney (1994))—is established by the follow-
ing theorem.

Theorem 4. Consider the Gibbs sampler with the following order of blocks at each iteration:
1) (∆Ṽm+1

t,i |θm, εm, d, x), ∀t, i; 2) (ρm+1|θm, εm, ∆Ṽm+1, d, x), (αm+1| . . .), (ηm+1| . . .), (hm+1
ε | . . .);

3) (εm+1
t,i |εm, θm+1, ∆Ṽm+1), ∀t, i; 4) (∆Vm+1

t,i |θm+1, εm+1, d, x), ∀t, i; where the blocks were de-
scribed above. Block 4) is redundant but simplifies the proof. Assume that the support of νt,i is
sufficiently large relative to the support of ε and θ: Φ(−h0.5

ν ν) < 0.25 and ν > 2(u + ε + βEV ),
where u is an upper bound on the absolute value of the deterministic part of the per-period utility
function, ε is an upper bound on the absolute value of εt,i, and EV = [u+ε+1+2h−1

ε ]/(1−β) is an
upper bound on the absolute value of the expected value function (see the proof.) Then, the Gibbs
sampler is uniformly ergodic. Thus, by Theorems 3 and 5 in Tierney (1994), for any integrable
(w.r.t. posterior) function z(∆V , θ, ε) the sample average zn = 1/n

∑
m z(∆Vm, θm, εm) converges

a.s. to the posterior expectation E(z|d, x). If E(z2|d, x) < ∞ then there exists a real number σ2(z)
such that

√
n(zn − E(z|d, x)) converges in distribution to N(0, σ2(z)).

The theorem is proven in Appendix A.3. For the Gibbs sampler that uses the approximations
instead of the actual value functions the uniform ergodicity holds in probabilistic sense. Suppose
that the DP solving algorithm stops at iteration n and that the Gibbs sampler uses the output
from the DP solving algorithm up to iteration n for approximating the value functions on all
the subsequent iterations. Then, this Gibbs sampler is uniformly ergodic with a probability that
converges to 1 very fast as n goes to infinity. That is it becomes uniformly ergodic a.s. This
statement follows from the proof of Theorem 4 and the fact that the approximated expected value
functions will be bounded by EV plus a small positive number with a probability that converges
to 1.

Most of the distributions in the described Gibbs sampler are truncated distributions. In practice,
it is easier to use distributions with unbounded support and ignore the truncation. To reconcile
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this with the theory, we could assume that the truncation bounds are very large. Then, the Gibbs
sampler that takes them into account would produce the same results as the Gibbs sampler that
does not: e.g. simulating N(0, 1) (or N(106, 106)) truncated to (−1.7 · 10308, 1.7 · 10308) will give
the same results as simulating N(0, 1) (or N(106, 106).) Therefore, in the experiments below, the
truncation to the bounded parameter and state spaces is not enforced.

5.2.5 Algorithm parallelization

Opportunities for algorithm parallelization are abundant and it is a possible subject for future
work. Approximating the expectations of the value functions either in the DP solving algorithm
or in the Gibbs sampler is a very frequent and time consuming task. The computations of the
expected value functions for different current states are not interrelated. Thus, they could be
computed simultaneously on different computers/processors in the cluster. In designing a parallel
implementation of an algorithm, it is crucial to take into account the time required for communi-
cation and data transfer between computers. As was indicated in Section 5.1.4 solving the DP on
several smaller random grids and combining the results is a very efficient alternative to using one
big random grid. If, in addition, different processors are used for solving the DP on each random
grid, the performance would be increased considerably since the need for data transfer between
processors will be decreased relative to just computing expectations simultaneously. In the Gibbs
sampler, the volume of data exchange between machines in the cluster could also be minimized.
Each processor in the cluster could be assigned to a part of the dataset. Then, simulating latent
variables pertaining to these parts of the dataset could be performed simultaneously by different
processors and no data exchange is needed given that the current parameters and the results of
the DP solving algorithm are copied to the memory of each computer in the cluster. In drawing
parameters there is no need for transferring all the latent variables and the corresponding expecta-
tions between computers. A computer assigned to a part of the dataset could compute aggregates
corresponding to its part of the dataset and transfer only these aggregates to the computer that
performs drawing the parameters: e.g. in drawing ρ| . . . parts of the sum in (60) could be com-
puted by the computers to which the corresponding part of the sample is assigned. The proposed
parallelization scheme is relatively easy to implement, and the potential gains in performance seem
to be considerable.

5.2.6 Estimation results for artificial datasets

Estimation was performed for two different artificial datasets. One artificial sample consisted of
I = 500 observations, the other one of I = 50. Each bus i is observed Ti ∈ {1, . . . , 200} months
until the engine is replaced (if the engine is not replaced at t = 200 the observation i is censored,
there were no such observations in simulated data.) As in Rust’s paper, the mileage is divided
into 90 discrete intervals corresponding to [0, 5000], . . . , [445000, 450000] miles. The parameter
values used for data generation were taken from Rust’s paper. The precision for the correlated
unobserved state variables hε was fixed: hε = hν = 0.6, which roughly corresponds to the precision
of the extreme value distributed errors in Rust’s paper. The time discount factor was equal to
β = 0.999. Joint distribution tests did not reject the hypothesis of correct implementation of the
prior, the data, and the posterior simulators.
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Table 3: Estimation results for artificial data

Run α1 α2 ρ η1 η2 η3

1 -0.00259 -9.6501 0.68033 0.33925 0.63972 0.021033
2 -0.00269 -10.3633 0.70285 0.33926 0.63971 0.021032

Post 3 -0.00293 -10.3536 0.69938 0.33927 0.6397 0.021032
mean 4 -0.00350 -9.8182 0.64874 0.34686 0.63296 0.020176

5 -0.0036 -11.1035 0.6841 0.34692 0.6329 0.020182
6 -0.00304 -8.6893 0.59938 0.34681 0.63302 0.020176
1 0.000998 1.5632 0.049545 0.003814 0.003869 0.001156
2 0.000955 1.6607 0.043103 0.003813 0.003868 0.001155

Post 3 0.00101 1.6814 0.050844 0.003816 0.003869 0.001156
SD 4 0.00146 2.1682 0.10262 0.011592 0.011751 0.003421

5 0.0015 2.8873 0.1041 0.011585 0.011734 0.003424
6 0.00129 2.066 0.126 0.011589 0.011731 0.003423
1 0.000258 0.7741 0.022153 5.00E-06 4.92E-06 1.19E-06

NSE 2 0.000236 0.90332 0.020992 4.85E-06 4.81E-06 1.31E-06
for 3 0.000263 0.79191 0.023947 4.54E-06 4.48E-06 1.27E-06

post 4 0.000222 0.46603 0.018748 1.85E-05 1.87E-05 3.78E-06
mean 5 0.000247 0.81699 0.023926 1.79E-05 1.78E-05 4.36E-06

6 0.000173 0.39219 0.020313 1.75E-05 1.79E-05 3.80E-06
True param -0.003 -10 0.7 0.34 0.64 0.02
Prior N(-.0035, N(−12, 52) N(.5, 10002) Dirichlet prior for η:

.00172) s.t. [0, 0.99] a1 = 34 a2 = 64 a3 = 2

Table 3 shows the estimation results for six posterior simulator runs. The first three runs (1-3)
were produced for the sample of size I = 500, the other three runs (4-6) for the sample of size
I = 50. The length of each run was equal to 1000000. Figure 7 illustrates the estimation results
graphically. As can be seen from the figure and the table, the posterior distributions are tighter
for the larger sample size. This expected behavior is more pronounced for η than for the rest of
the parameters. There are some other respects in which the results are different for η. First, the
uncertainty about η seems to be much smaller than for the rest of the parameters. Second, the
acceptance rate for η was about 90%, which is quite high compared to 10-20% for ρ (for alpha
it was about 27%, but it should not be compared with the other two since it is affected by the
preset variance of the MH transition density.) Third, the amount of serial correlation in draws of
η was insignificant, which resulted in very fast convergence for η. For the rest of the parameters
the observations made for Gilleskie’s model, such as large uncertainty about parameters and slow
convergence are unchanged. The most important reason for this difference seems to be a great
deal of information that the data on bus mileage xt,i contain about η. Information about the rest
of the parameters is mainly contained in the observed decisions and obscured by the presence of
a lot of latent variables. Thus, long posterior simulator runs are also required for estimation of
Rust’s model due to considerable amount of serial correlation in the posterior simulator draws for
the weakly identified part of the parameter vector.
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Figure 7: Estimated posterior densities: solid lines for I = 500, dotted lines for I = 50. (a) α1, (b) α2, (c) ρ, (d)
η1, (e) η2, (f) η3. The dashed lines are prior densities. The vertical lines show the actual parameter values.

An attempt to decrease the amount of serial correlation was made. Instead of drawing the corre-
lated unobservables (εt,i|εt−1,i, εt+1,i, . . .) one at a time, I tried to draw them in blocks
(εt1,i, εt1+1,i, . . . , εt2,i|εt1−1,i, εt2+1,i, . . .). For the blocks of size t2− t1 +1 = 2 the acceptance rate for
the correlated unobservables dropped from 0.6 to 0.4 and the amount of serial correlation in the
sampler did not seem to change much. For the blocks of size t2 − t1 + 1 = 5 the acceptance rate
for the correlated unobservables and ρ decreased to less than 0.001. Thus, grouping parameters
in larger Gibbs sampler blocks does not seem to work as a technique of decreasing the amount of
serial correlation in posterior simulator draws for this problem. Looking for other techniques is a
subject of future work.

5.2.7 Exact and approximate estimation for extreme value unobservables

To evaluate the quality of the estimation results I conduct experiments on the model with ex-
treme value unobservables—the dynamic logit model. For this model, the integration over the
unobservables in solving the DP and in the likelihood function can be performed analytically. The
estimation method that integrates the unobservables analytically in the likelihood and in the DP
solution will be referred below as the exact algorithm. The posterior simulator for this method
also uses the Metropolis-Hastings algorithm since the logit-like choice probabilities comprising the
likelihood function contain the expected value functions that can only be computed numerically.

The approximate algorithm will refer to the algorithm proposed in this paper. The Gibbs
sampler for the approximate algorithm is the same as the one for the Gaussian unobservables
described in Section 5.2.3; except here the Gaussian probability densities are replaced by the
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densities for the extreme value distribution. Table 4 gives the estimation results for the exact and
approximate algorithms. The experiments use an artificial dataset consisting of observations on
I = 70 buses.

Table 4: Exact and approximate estimation results.

Run α1 α2 η1 η2 η3

1 -0.00228 -9.0721 0.34433 0.63394 0.021736
2 -0.00247 -9.4999 0.34435 0.63392 0.021731
3 -0.00203 -9.1815 0.3443 0.63397 0.021733

Post 4 -0.00207 -9.2569 0.34433 0.63394 0.021732
mean 5 -0.00229 -8.7955 0.34435 0.63393 0.021727

6 -0.00241 -9.0610 0.34435 0.63392 0.021733
7 -0.00229 -9.0519 0.34434 0.63392 0.02174
8 -0.00231 -9.0797 0.34432 0.63395 0.021733
1 0.00044 0.8538 0.006311 0.006399 0.001939
2 0.00049 0.9795 0.006315 0.006403 0.001938
3 0.00046 0.9681 0.006314 0.0064 0.00194

Post 4 0.00047 0.9655 0.00631 0.006394 0.001932
SD 5 0.00042 0.7790 0.006302 0.006396 0.001938

6 0.00051 0.9789 0.006298 0.006395 0.001938
7 0.00051 1.0028 0.006327 0.006412 0.001941
8 0.00049 0.9680 0.006306 0.006396 0.001941
1 0.00015 0.3444 7.42E-06 7.31E-06 2.23E-06
2 0.00019 0.4404 8.48E-06 8.12E-06 2.11E-06

NSE 3 0.00007 0.1892 2.27E-05 2.10E-05 4.16E-06
for 4 0.00007 0.2015 2.63E-05 2.36E-05 4.61E-06

post 5 0.00005 0.1196 1.90E-05 1.74E-05 3.95E-06
mean 6 0.00007 0.1957 1.82E-05 1.71E-05 3.88E-06

7 0.00007 0.1926 2.11E-05 1.97E-05 3.93E-06
8 0.00006 0.1776 2.04E-05 1.88E-05 3.81E-06

Prior N(-0.003, .0017) N(-10, 5) Dirichlet prior
a1 = 34 a2 = 64 a3 = 2

Actual param -0.003 -10 0.34 0.64 0.02

Runs 1–2 in the table are the runs of the exact posterior simulator started from different random
initial values for the parameters. The length of runs 1–2 was 1000000. For the approximate
algorithm three different realization of the random grid for solving the DP were used. Each grid
realization corresponds to a pair of simulator runs: 3–4, 5–6, and 7–8. The random number
generator was initialized differently for each run. The length of runs 3–8 was about 500000.

Figure 8 shows the marginal posterior densities for the parameters obtained from the exact
and approximate algorithms. The densities were obtained by kernel smoothing over all available
simulator runs: 2 runs for the exact algorithm and 6 runs for the approximate algorithm. The
results in the figure and table above suggest that the approximation quality of the proposed
algorithm is very good.
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Figure 8: Comparison with exact and approximate estimation algorithms. Estimated posterior densities: (a) α1,
(b) α2, (c) η1, (d) η2, (e) η3. The vertical lines show the actual parameter values.The solid line shows the posterior
for exact estimation procedure, the dashed line – approximate estimation procedure

5.2.8 The role of serial correlation in unobservables

In this section, I show how the presence of serial correlation in unobservables in the data generation
process affects the estimation results for the dynamic logit model. For this purpose I use an artificial
dataset simulated from the model with Gaussian serially correlated unobservables described in this
paper (it will be referred in this section as the true model.) Then, I use this data in estimation of
the dynamic logit model and the true model. The results are shown in the table below.

Table 5: Estimation results for the dynamic logit model and the model with Gaussian serially correlated unobserv-
ables.

Run α1 α2 ρ η1 η2 η3

Post logit -0.00091 -3.1431 0.35883 0.62733 0.0138
mean true -0.00276 -10.7342 0.8430 0.35887 0.6273 0.0138
Post logit 0.00065 0.2275 0.012606 0.012703 0.003
SD true 0.00098 1.3262 0.0610 0.012607 0.012719 0.003

NSE post logit 0.00001 0.0050 1.38E-05 1.37E-05 3.2E-06
mean true 0.00006 0.1848 0.0187 2.02E-05 2.0E-05 3.8E-06
Actual param -0.003 -10.0 0.8500 0.34 0.64 0.02
Prior N(-.003, .0017) N(-10, 5) N(0.5, 1000) Dirichlet prior

s.t. [-.99, .99] a1 = 34 a2 = 64 a3 = 2

From this table, it might seem that the presence of serial correlation in unobservables produces
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the same effect as an increase in the variance of these unobservables would. The utility function
parameters are almost proportional for both cases. To get more insight into the effects of serial
correlation in unobservables, I compute the posterior means of the hazard function for each of the
models.

Figure 9: The posterior means of the hazard functions. Panel (a)—the data generated from the model with
the serially correlated unobservables, panel (b)—the data generated from the dynamic logit model. The vertical
axis is for the probability of engine replacement, the horizontal axis is for the mileage interval. The solid line is
for the model with serially correlated unobservables. The dashed line—for dynamic multinomial logit, the dotted
line—data hazard.

As can be seen from panel (a) in Figure 9, the dynamic logit model would underestimate the
probability of the engine replacement for low mileage and considerably overestimate the probability
for high mileage if serial correlation is present in the data generation process. Moreover, the
shape of the hazard function is also different. In the dynamic logit case, the hazard function is
increasing, while for the true model it is decreasing at first. Although the estimated hazard is
noisy, the decrease at the beginning was observed for several posterior simulator runs; thus it is
not a result of the noise. For comparison, panel (b) shows the posterior means of the hazard
functions estimated from the artificial data that were simulated from the dynamic logit model.
In this case, the hazards for the dynamic logit model and for the model with Gaussian serially
correlated unobservables seem to be very close and have the same shape. These results support
the claim that the disparities in the hazards observed in panel (a) are driven by the presence of
serial correlation in the data but not by the different distributional assumptions on unobservables:
Gaussian vs. extreme value. These experiment demonstrate that ignoring serial correlation in
unobservables might lead to serious misspecification errors.

5.2.9 Estimation results for a real dataset

The data set is group 4 from Rust’s paper. It contains observations on 37 buses that could be
divided into I = 70 individual spells containing one engine replacement (or censored at the last
observed xt), which gives

∑
i Ti = 4329 monthly mileage/decision points. It takes about 50 seconds

to produce 100 draws from the posterior on a 2002 vintage PC.
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To start the Gibbs sampler I used the parameter estimates from Rust’s paper. The algorithm
also works if the Gibbs sampler is started from a draw from the prior distribution or from the
zero vector for the utility function parameters α and the data frequencies for the state transition
probabilities η. The initial values for the latent variables are adjusted so that the observed decisions
are optimal. In particular, given the parameter values, the serially correlated unobservables εt,i are
simulated from the corresponding AR(1) process. Then, ∆Vt,i are adjusted to satisfy the observed
choice optimality constraints with a small margin. It is also possible to adjust εt,i together with
∆Vt,i. If the initial values for εt,i are not simulated from the AR(1) process or if the starting value
for ρ is far in the tail of the posterior, a procedure similar to the simulated annealing might be
helpful in starting the Gibbs sampler with high acceptance rates: the acceptance probabilities for
the parameters are multiplied by a decreasing quantity on the first hundred iterations.

Estimation results for 6 posterior simulator runs are presented in Table 6 and Figure 10. The
number of draws for each simulator run was equal to 1000000.

Table 6: Estimation results for data from Rust’s paper, group 4.

Run α1 α2 ρ η1 η2 η3

1 -0.00275 -9.5631 -0.1763 0.40325 0.58388 0.012874
2 -0.00289 -10.0439 0.0945 0.40325 0.58388 0.012869

Post 3 -0.00248 -11.2845 0.1545 0.40329 0.58385 0.012868
mean 4 -0.00228 -9.8963 -0.1000 0.40328 0.58385 0.012868

5 -0.00224 -10.1331 -0.0526 0.40318 0.58395 0.012875
6 -0.00233 -10.3774 -0.0573 0.4032 0.58392 0.012872
1 0.00123 2.4267 0.4229 0.00736 0.007394 0.001696
2 0.00146 2.8896 0.2879 0.007381 0.007414 0.001694

Post 3 0.00084 3.2330 0.4170 0.0074 0.007434 0.001693
SD 4 0.00075 2.5904 0.4871 0.007388 0.007421 0.001694

5 0.00066 2.9959 0.4805 0.007365 0.007403 0.001694
6 0.00075 2.8908 0.4894 0.007379 0.007416 0.001694
1 0.00027 0.6762 0.0916 1.65E-05 1.59E-05 2.33E-06

NSE 2 0.00039 0.9795 0.0451 1.71E-05 1.65E-05 2.34E-06
for 3 0.00012 1.2031 0.1175 1.94E-05 1.86E-05 2.37E-06

post 4 0.00013 0.9552 0.1463 2.23E-05 2.13E-05 2.94E-06
mean 5 0.00008 0.9910 0.1225 1.49E-05 1.44E-05 2.23E-06

6 0.00010 0.9460 0.1258 1.41E-05 1.35E-05 2.37E-06
Prior N(-.003, .0017) N(-10, 5) N(0.5, 1000) Dirichlet prior

s.t. [-.99, .99] a1 = 34 a2 = 64 a3 = 2

Three different random grids for solving the DP were used in these experiments (the random grid
is generated before the estimation procedure starts and it stays fixed through the simulator run,
Proposition 6 justifies using the same random grid at each iteration of the algorithm if the number
of the nearest neighbors is constant.) One grid was used for runs 1–2, another one for runs 3–4,
and the last one for runs 5–6. The random number generator was initialized differently for each
run.

Convergence of the Gibbs sampler draws to the stationary distribution could be judged by com-
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paring the posteriors obtained for the same realizations of the random grid. For all the parameters
but ρ convergence was attained in all the runs. Convergence for ρ was clearly attained only for
runs 5–6. To reduce the role of the MCMC slow convergence for ρ in evaluating the effects of the
random grid on the estimation results I combine the draws from the simulator runs corresponding
to the same realizations of the random grid. The three posterior densities corresponding to runs
1–2, 3–4, and 5–6 are presented in Figure 10.

Figure 10: Estimated posterior densities for different grids: (a) α1, (b) α2, (c) ρ, (d) η1, (e) η2, (f) η3. The dashed
lines are prior densities. The solid lines are posterior densities averaged over all simulator runs. The dotted lines
show posterior densities averaged for runs 1–2, 3–4, and 5–6.

The figure and table above suggest that only the estimation results for ρ are significantly affected
by the random grid realization. The results for strongly identified η are not affected at all.

The qualitative results for ρ do not seem to depend on the grid realization. The posterior
distribution for ρ is bimodal. The higher mode is positive and located at about 0.2, the lower
mode is at about -0.6. The posterior mean is close to 0. The posterior probability of ρ > 0 is in
0.54–0.66 range. Overall, there seems to be no strong evidence that Rust’s assumption of no serial
correlation in the unobservables is invalid.

A more objective criterion for studying the effects of the grid realization on the estimation
results would be to check how it affects conditional choice probabilities or results of some policy
changes. If the effects are still present then there are several alternative ways to reduce them. The
first one is to estimate the posterior densities from several posterior simulator runs corresponding
to different grids. This was done for the experiment above and the resulting densities are shown
by the solid lines in Figure 10.

Increasing the size of the grid seems to be a more attractive way to obtain better approximations
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for the posterior distribution. However, it would increase the computational burden of solving the
DP and approximating the expectations in the Gibbs sampler. In both cases this burden can be
ameliorated. As was described in Section 5.1.4, solving the DP on several small random grids and
combining the results produces about the same approximation precision as solving the DP on one
big random grid. However, using several smaller grids requires much less time. To speed up the
approximation of the expectations in the Gibbs sampler a strategy proposed by Keane and Wolpin
(1994) could be used. In solving the DP, the authors compute expectations using Monte Carlo
integration only for a subset of states in the discretized state space. For the rest of the states
the expectations are computed by interpolation. Such an interpolation function could be used for
approximating the expectations in the Gibbs sampler.

I am currently working on another approach to estimation of dynamic discrete choice models
that avoids the problem of estimation results dependence on the random grid realization. The
future expected value function can be seen as a function of the parameters, the current state, and
the chosen alternative. Experiments in this paper showed that kernel smoothing does not provide
sufficiently good approximations of this function. It turns out that artificial neural networks do.
The DP solving algorithm presented in this paper can produce very precise approximations of the
value functions as described in Section 5.1.4. It is not feasible to get such precision for a million
of parameter draws required to reasonably approximate the posterior distributions. However, it is
feasible for several thousand draws from a prior distribution. These precise approximations can
be used to train an artificial neural network beforehand of the estimation procedure. Then this
neural network can be used in the Gibbs sampler for approximating the expectations of the value
functions. Preliminary experiments in Norets (2006) suggest that this indeed could be a promising
alternative.

6 Conclusion and future work

This paper presents a method for Bayesian inference in dynamic discrete choice models with se-
rially correlated unobserved state variables. It constructs the Gibbs sampler, employing data
augmentation and Metropolis steps, that can successfully handle multidimensional integration in
the likelihood function of these models. The computational burden of solving the DP at each
iteration of the estimation algorithm can be reduced by efficient use of the information obtained
on previous iterations. A proof of the complete uniform convergence of the proposed DP solution
approximations to the true values is obtained under mild assumptions on the primitives of the
model. In Bayesian analysis, inference results are often represented in terms of posterior expecta-
tions. The paper establishes the complete convergence of the posterior expectations approximated
by the proposed method.

Serially correlated unobservables are not the only possible source of intractable integrals in the
likelihood function of DDCMs. The Gibbs sampler algorithm can be extended to tackle other cases
as well. First, missing observations could be handled by data augmentation in this framework. An
example of that is different observation frequencies for different variables in a dataset, e.g. HRS
interviews are conducted biannually but the attached data from the Social Security Administration
and Medicare records are available monthly or even daily. Also, adding a macro shock or a cohort
effect into a model is equally easy. It would amount to adding another block in the Gibbs sampler.
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The method is experimentally evaluated on two different dynamic discrete choice models. First
of all, estimation experiments show that ignoring serial correlation in unobservables can lead to
serious misspecification errors. Second, parameters in DDCMs are often weakly identified. In
Bayesian inference, uncertainty about parameters is treated explicitly. This advantage of Bayesian
methods seems to be very important for DDCMs. Since the proposed estimation method allows for
serial correlation in unobservables and accounts for uncertainty about parameters, its application
is likely to improve the reliability of the answers to the policy questions that a DDCM can provide.

There are several directions in which the method could be improved. First, the amount of serial
correlation in posterior simulator draws is very large. Thus, long posterior simulator runs are
required for exploring the posterior distributions. Developing strategies for decreasing the amount
of serial correlation in the Gibbs sampler draws is an important area for future research. Due to the
high computational demand the method is implemented in C. Application of parallel computing
seems to be a fruitful way to achieve higher performance of the method in the future.

Experiments with the DP solving algorithm led to a discovery of several significant practical
improvements in the algorithm. First, the approximations of the expected value function obtained
for fixed parameters and different realizations of the random grid behave as if an analog of a CLT
with respect to the size of the random grid holds. This suggests that solving the DP on several
small random grids and combining the results is a very efficient alternative to using one large grid.
Theoretical justification of this observed improvement in the algorithm performance could be a
subject of future work. Second, a difference of expected value functions can be approximated by
the DP solving algorithm with a much higher precision than an expected value function by itself.
This is taken into account in the construction of the Gibbs sampler. As a result, the realization of
the random grid on which the DP is solved does not seem to seriously alter the results of estimation
even for small grid sizes.

The flexibility of the framework and extensive experimentation were crucial for making the
proposed approach successful. Nevertheless, combined with efficient DP solution strategies, stan-
dard tools of Bayesian analysis—Gibbs sampling, data augmentation, and the Metropolis-Hastings
algorithm—seem to be very promising in making more elaborate dynamic discrete choice models
estimable.
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A Appendix. Proofs

A.1 Lemmas

Lemma 1. Given ε̃ > 0, there exist δ > 0 and T such that for any θ ∈ Θ, s ∈ S, and t > T :

P (|At
1(θ, s)| > ε̃) ≤ e−δÑ(t)N̂(t−N(t)) ≤ e−0.5δtγ1 (63)

Proof. Fix a combination m = {m1, . . . ,mÑ(t)} from {t −N(t), . . . , t − 1}. Assumption 7 defines

X(ωt−1, θ, s, d,m). Since the importance sampling weights are bounded away from zero by f > 0
(see Assumption 4),

[X(ωt−1, θ, s, d,m) > ε̃]

⊂

| Ñ(t)∑
i=1

N̂(mi)∑
j=1

(V (smi,j; θ)− E[V (s′; θ) | s, d; θ])f(smi,j | s, d; θ)/g(smi,j)∑Ñ(t)
r=1 N̂(mr) infθ,s,s′,d f(s′|s, d; θ)/g(s′)

| > ε̃

 (64)

=

| Ñ(t)∑
i=1

N̂(mi)∑
j=1

(V (smi,j; θ)− E[V (s′; θ) | s, d; θ])f(smi,j | s, d; θ)/g(smi,j)| > ε̃f

Ñ(t)∑
i=1

N̂(mi)


Using (64) and then applying Hoeffding (1963)’s inequality we get

P (X(ωt−1, θ, s, d,m) > ε̃)

≤ P

| Ñ(t)∑
i=1

N̂(mi)∑
j=1

(V (smi,j; θ)− E[V (s′; θ) | s, d; θ])f(smi,j | s, d; θ)/g(smi,j)| > ε̃f

Ñ(t)∑
i=1

N̂(mi)


≤ 2 exp

−2f 2ε̃2

(b− a)2

Ñ(t)∑
r=1

N̂(mr)

 (65)

where a and b are correspondingly the lower and upper bounds on
(V (smi,j; θ)− E[V (s′; θ) | s; θ])f(smi,j | s, d; θ)/g(smi,j). Hoeffding’s inequality applies since smi,j

are independent, the summands have expectations equal to zero:∫
(V (smi,j; θ)− E[V (s′; θ) | s; θ])f(smi,j | s, d; θ)

g(smi,j)
g(smi,j)dsmi,j = 0 (66)

and a and b are finite by Assumptions 1, 3, and 4.
Since N̂(.) is non-decreasing, (65) implies

P (X(ωt−1, θ, s, d,m) > ε̃) ≤ 2 exp

{
−2f 2ε̃2

(b− a)2
Ñ(t)N̂(t−N(t))

}
= 2 exp

{
−4δÑ(t)N̂(t−N(t))

}
(67)

where the last equality defines δ > 0.
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Since |At
1(θ, s, d)| < maxm X(ωt−1, θ, s, d,m):

P (|At
1(θ, s, d)| > ε̃) ≤ P [max

m
X(ωt−1, θ, s, d, m) > ε̃]

= P (∪m[X(ωt−1, θ, s, d, m) > ε̃]) ≤
∑
m

P [X(ωt−1, θ, s, d,m) > ε̃]

≤ 2 exp
{
−4δÑ(t)N̂(t−N(t))

} N(t)!

(N(t)− Ñ(t))!Ñ(t)!
(68)

where the summation, the maximization, and the union are taken over all possible combinations
m and N(t)!/((N(t)− Ñ(t))!Ñ(t)!) is the number of the possible combinations.

Assumption 6 and Proposition 8 show that ∃T1 such that ∀t > T1,

exp
{
−4δÑ(t)N̂(t−N(t))

} N(t)!

(N(t)− Ñ(t))!Ñ(t)!
≤ exp

{
−2δÑ(t)N̂(t−N(t))

}
(69)

Finally,

P (|At
1(θ, s)| > ε̃) = P (max

d∈D
|At

1(θ, s, d)| > ε̃) = P (∪d∈D[|At
1(θ, s, d)| > ε̃])

≤ card(D)2 exp{−2δÑ(t)N̂(t−N(t))},∀t > T1

≤ exp{−δÑ(t)N̂(t−N(t))},∀t > T2 ≥ T1 (70)

where such T2 exists since card(D)2 exp{−δÑ(t)N̂(t − N(t))} → 0. The last inequality in (63)

follows since Ñ(t)N̂(t−N(t)) ≥ tγ1 − tγ1−γ2 ≥ 0.5tγ1 for any t larger than some T ≥ T2.

Lemma 2. Given ε̃ > 0, there exist δ > 0 and T such that for any θ ∈ Θ, s ∈ S, and t > T :

P (|At
2(θ, s)| > ε̃) ≤ e−δ(N(t)−Ñ(t)) ≤ e−0.5δtγ1 (71)

Proof.

[∣∣At
2(θ, s, d)

∣∣ > ε̃
]

=

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(t)∑
j=1

(V (ski,j; θki)− V (ski,j; θ))Wki,j,t(s, d, θ)

∣∣∣∣∣∣ > ε̃


⊂

Ñ(t)∑
i=1

N̂(t)∑
j=1

|V (ski,j; θki)− V (ski,j; θ)|Wki,j,t(s, d, θ) > ε̃


⊂

[
∃ki, j : |V (ski,j; θki)− V (ski,j; θ)| > ε̃

]
(72)

Since V (s; θ) is continuous, and Θ × S is a compact, ∃δ̃ε̃ > 0 such that ||(s1, θ1) − (s2, θ2)|| ≤ δ̃ε̃

implies |V (s1; θ1)− V (s2; θ2)| ≤ ε̃. Therefore,[
∃ki, j : |V (ski,j; θki)− V (ski,j; θ)| > ε̃

]
⊂ [∃ki, j : ||(ski,j, θki)− (ski,j, θ)|| > δ̃ε̃] = [∃ki : ||θki − θ|| > δ̃ε̃] (73)
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Because ki are the indices of the parameters from the previous iterations that are the closest to θ:

[∃ki : ||θki − θ|| > δ̃ε̃]

⊂ [∀j ∈ {t−N(t), . . . , t− 1} \ {k1, . . . , kÑ(t)} : ||θj − θ|| > δ̃ε̃]

⊂
⋃

(j1,...,jN(t)−Ñ(t)):jm∈{t−N(t),...,t−1},m 6=l⇒jm 6=jl

N(t)−Ñ(t)⋂
m=1

[
||θjm − θ|| > δ̃ε̃

]
(74)

Fix some (j1, . . . , jN(t)−Ñ(t)), then by Assumption 5:

P ([||θjm − θ|| > δ̃ε̃]|ωjm−1)

= 1− P ([||θjm − θ|| < δ̃ε̃]|ωjm−1) ≤ 1− δ̂λ[Bδ̃ε̃
(θ) ∩Θ]

≤ 1− δ̂[δ̃ε̃/J
0.5
Θ ]J = exp{−4(−0.25 log(1− δ̂[δ̃ε̃/J

0.5
Θ ]J))} = e−4δ (75)

where the last equality defines δ > 0, JΘ is the dimensionality of rectangle Θ, B.(.) is a ball in
RJΘ . It holds for any history ωjm−1; thus for fixed (j1, . . . , jN(t)−Ñ(t))

P

N(t)−Ñ(t)⋂
m=1

[
||θjm − θ|| > δ̃ε̃

] ≤ e−4δ(N(t)−Ñ(t)) (76)

Since the union in (74) is taken over N(t)!/(Ñ(t)!(N(t)− Ñ(t))!) events

P
[∣∣At

2(x, θ, ε)
∣∣ > ε̃

]
≤ e−4δ(N(t)−Ñ(t)) N(t)!

Ñ(t)!(N(t)− Ñ(t))!

≤ e−2δ(N(t)−Ñ(t)),∀t > T2 (77)

where the second inequality and existence of T2 follows from Assumption 6 and Proposition 8.
Finally,

P (|At
2(θ, s)| > ε̃) = P (max

d∈D
|At

2(θ, s, d)| > ε̃) = P (∪d∈D[|At
2(θ, s, d)| > ε̃])

≤ card(D)e−2δ(N(t)−Ñ(t)),∀t > T2

≤ e−δ(N(t)−Ñ(t)),∀t > T3 ≥ T2 (78)

where such T3 exists since card(D)e−δ(N(t)−Ñ(t)) → 0. The last inequality in (95) follows since

N(t)− Ñ(t) ≥ [tγ1 − [tγ2 ] ≥ tγ1 − 1− tγ2 ≥ 0.5tγ1 for any t larger than some T ≥ T3. (79)

Lemma 3. Given ε̃ > 0, there exist δ > 0 and T such that ∀θ ∈ Θ, ∀s ∈ S, and ∀t > T :

P (|At
3(θ, s)| > ε̃) ≤ e−δtγ0γ1 (80)
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Proof. First let’s show that for any positive integer m, ∀θ ∈ Θ, and ∀s ∈ S

At
3(θ, s) ≤ β

1− β

[
max

i=t−mN(t),t−1

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+ max

i=t−mN(t),t−1

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)]
+βm max

i=t−mN(t),t−1

(
max

j=1,N̂(i)
Ai

3(θ
i, si,j)

)
(81)

By definition

At
3(θ, s, d) =

∣∣∣∣∣∣
Ñ(t)∑
i=1

N̂(ki)∑
j=1

(V ki(ski,j; θki)− V (ski,j; θki))Wki,j,t(s, d, θ)

∣∣∣∣∣∣ (82)

Since maxd a(d)−maxd b(d) ≤ maxd{a(d)− b(d)}

|V ki(ski,j; θki)− V (ski,j; θki)|

= |max
d∈D

{
u(ski,j, d) + βÊ(ki)[V (s′; θki) | ski,j, d; θki ]

}
−max

d∈D

{
u(ski,j, d) + βE[V (s′; θki) | ski,j, d; θki ]

}
|

≤ |max
d∈D

{
βÊ(ki)[V (s′; θki) | ski,j, dθki ]]− βE[V (s′; θki) | ski,j, d; θki ]

}
| (83)

From (83) and definition of At
l(.) given in Theorem 1,

|V ki(ski,j; θki)− V (ski,j; θki)|
≤ β max

d∈D

(
Aki

1 (θki , ski,j, d) + Aki
2 (θki , ski,j, d) + Aki

3 (θki , ski,j, d)
)

≤ β
(
Aki

1 (θki , ski,j) + Aki
2 (θki , ski,j) + Aki

3 (θki , ski,j)
)

(84)

Combining (82) and (84) gives:

At
3(θ, s, d) ≤ β

Ñ(t)∑
i=1

N̂(ki)∑
j=1

(
Aki

1 (θki , ski,j) + Aki
2 (θki , ski,j) + Aki

3 (θki , ski,j)
)
Wki,j,t(s, d, θ)

≤ β max
i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+ β max

i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)
+β max

i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

3(θ
i, si,j)

)
(85)

where the second inequality follows from the fact that ∀i ∈ {1, . . . , Ñ(t)}, ki ∈ {t−N(t), . . . , t−1}
and the weights sum to one. Since the r.h.s. of (85) does not depend on d:

At
3(θ, s)

≤ β max
i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+ β max

i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)
(86)

+β max
i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

3(θ
i, si,j)

)
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To facilitate the description of the iterative process on (86) that will lead to (81) let M(t, 0) = t
and M(t, i) = M(t, i− 1)−N(M(t, i− 1)), then

At
3(θ, s) ≤ β max

i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+ β max

i=t−N(t),t−1

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)
+β2 max

i=t−N(t)−N [t−N(t)],t−2

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+β2 max

i=t−N(t)−N [t−N(t)],t−2

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)
+β2 max

i=t−N(t)−N [t−N(t)],t−2

(
max

j=1,N̂(i)
Ai

3(θ
i, si,j)

)
≤

m∑
k=1

βk

[
max

i=M(t,k),t−k

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+ max

i=M(t,k),t−k

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)]
+βm max

i=M(t,m),t−m

(
max

j=1,N̂(i)
Ai

3(θ
i, si,j)

)
(87)

from which (81) follows since
∑m

k=1 βk < β/(1− β), and M(t,m) ≥ t−mN(t) ∀m.
Inequality in (81) is shown to hold for any m. Let m(t) = [(t − tγ0)/N(t)] ([x] is the integer

part of x.) and notice that M(t,m(t)) ≥ t −m(t)N(t) ≥ tγ0 . Since Ai
3(θ

i, si,j) is bounded above
by some Ā3 < ∞ (utility function and state and parameter spaces are bounded):

P [|At
3(θ, s)| > ε̃]

≤ P [
β

1− β

{
max

i=t−m(t)N(t),t−1

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
+ max

i=t−m(t)N(t),t−1

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)}
+βm(t) max

i=t−m(t)N(t),t−1

(
max

j=1,N̂(i)
Ai

3(θ
i, si,j)

)
> ε̃]

≤ P

[
max

i=t−m(t)N(t),t−1

(
max

j=1,N̂(i)
Ai

1(θ
i, si,j)

)
>

ε̃(1− β)

3β

]
+P

[
max

i=t−m(t)N(t),t−1

(
max

j=1,N̂(i)
Ai

2(θ
i, si,j)

)
>

ε̃(1− β)

3β

]
+P

[
βm(t)Ā3 >

ε̃

3

]

≤
t−1∑

i=t−m(t)N(t)

N̂(i)∑
j=1

{
P

[
Ai

1(θ
i, si,j) >

ε̃(1− β)

3β

]
+ P

[
Ai

2(θ
i, si,j) >

ε̃(1− β)

3β

]}
(88)

The last inequality holds for t > T3, where T3 satisfies P (βm(t)Ā3 > ε̃/3) = 0, ∀t > T3. Such T3

exists since m(t) →∞.
Since t − m(t)N(t) → ∞, by Lemma 1 and Lemma 2, exist δ1 > 0, δ2 > 0, T1, and T2, such
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that for ∀t > max(T1, T2, T3):

P (|At
3(θ, s)| > ε̃) ≤

t−1∑
i=t−m(t)N(t)

N̂(i)
[
e−δ1Ñ(i)N̂(i−N(i)) + e−δ2(N(i)−Ñ(i))

]
(89)

Proposition 9 shows that exist δ > 0 and T4 such that the r.h.s of (89) is no larger than
exp(−δtγ0γ1),∀t > T4. Thus, setting T = max(T1, T2, T3, T4) completes the proof.

A.2 Extension to the uniform convergence

First, note that the approximation error is not a continuous function of (θ, s). Thus, we cannot
apply the standard results to show the measurability of the supremum of the approximation error
over the state and parameter spaces. Proposition 1 and Proposition 3 can be used to establish the
measurability in this case. Below, Lemma 4 shows that a uniform version of Lemma 1 holds given
extra Assumption 7. Lemma 5 shows that a uniform version of Lemma 2 also holds. A uniform
version of Lemma 3 holds trivially since the right hand side of the key inequality (81) does not
depend on (θ, s). Theorem 2 follows from the uniform versions of the Lemmas in the same way as
Theorem 1 follows from Lemmas 1-3.

Proposition 1. Let f(ω, θ) be a measurable function on (Ω × Θ, σ(A × B)) with values in R.
Assume that Θ has a countable subset Θ̃ and that for any ω ∈ Ω and any θ ∈ Θ there exists a
sequence in Θ̃, {θ̃n} such that f(ω, θ̃n) → f(ω, θ). Then, supθ∈Θ f(ω, θ) is measurable w.r.t. (Ω,A)
(the proposition can be used to show that the supremum of a random function with some simple
discontinuities, e.g. jumps, on a separable space is measurable.)

To apply the proposition for establishing the measurability of the supremum of the approxi-
mation errors, let the set of rational numbers contained in Θ × S play the role of the countable
subset Θ̃. Proposition 3 shows that for any given history ωt−1 and any (θ, s) it is always possible

to find a sequence with rational coordinates (θ̃n) → θ such that for all n, (θ̃n) and θ have the same
iteration indices for the nearest neighbors. For a given history ωt−1, the approximation error is
continuous in (θ, s) on the subsets of Θ × S that give the same iteration indices of the nearest

neighbors. Using any rational sequence sn → s gives f(ω, ˜(θ, s)n) → f(ω, (θ, s)) required in the
proposition. Thus, the supremum of the approximation error is measurable.

Proof. First, let’s show that for an arbitrary t

∪θ∈Θ [f(ω, θ) > t] = ∪θ∈Θ̃[f(ω, θ) > t] (90)

Assume ω1 ∈ ∪θ∈Θ[f(ω, θ) > t]. It means there exists θ1 ∈ Θ such that f(ω1, θ1) > t. By the

theorem’s assumption ∃{θ̃n} such that f(ω1, θ̃n) → f(ω1, θ1). Then, ∃n, f(ω1, θ̃n) > t. Thus,
ω1 ∈ ∪θ∈Θ̃[f(ω, θ) > t] and (90) is proven.

Note that [supθ∈Θ f(ω, θ) > t] = ∪θ∈Θ[f(ω, θ) > t] = ∪θ∈Θ̃[f(ω, θ) > t] is a countable union of
sets from A and thus also belongs to A.

Lemma 4. Given ε̃ > 0, there exist δ > 0 and T such that ∀t > T :

P ( sup
θ∈Θ,s∈S

|At
1(θ, s)| > ε̃) ≤ e−δÑ(t)N̂(t−N(t)) ≤ e−0.5δtγ1 (91)
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Proof. Fix a combination m = {m1, . . . ,mÑ(t)} from {t − N(t), . . . , t − 1}. Assumption 7 de-

fines X(ωt−1, θ, s, d, m). By Assumption 7, {X(ωt−1, θ, s, d,m)}ωt−1 are equicontinuous on Θ ×
S: there exists δ̃(ε̃) > 0 such that ||(θ1, s1) − ((θ2, s2))|| < δ̃(ε̃) implies |X(ωt−1, θ1, s1, d, m) −
X(ωt−1, θ2, s2, d, m)| < ε̃/2. Since Θ× S is a compact set it can be covered by M balls: Θ× S ⊂
∪M

i=1Bi with radius δ̃(ε̃) and centers at (θi, si), where M < ∞ depends only on ε̃. It follows that

[sup
θ,s

X(ωt−1, θ, s, d,m) > ε̃] = ∪θ,s[X(ωt−1, θ, s, d,m) > ε̃] = ∪M
i=1 ∪(θ,s)∈Bi

[X(ωt−1, θ, s, d,m) > ε̃]

(92)
Let’s show that

∪(θ,s)∈Bi
[X(ωt−1, θ, s, d,m) > ε̃] ⊂ [X(ωt−1, θi, si, d, m) >

ε̃

2
] (93)

If ωt−1
∗ ∈ ∪(θ,s)∈Bi

[X(ωt−1, θ, s, d,m) > ε̃], then ∃(θ∗, s∗) ∈ Bi(θi, si) such that X(ωt−1
∗ , θ∗, s∗, d, m) >

ε̃. Since ||(θ∗, s∗)− (θi, si)|| ≤ δ̃(ε̃), X(ωt−1
∗ , θi, si, d, m) ≥ X(ωt−1

∗ , θ∗, s∗, d, m)− ε̃/2. This implies
ωt−1
∗ ∈ [X(ωt−1, θi, si, d, m) > ε̃

2
].

Since supθ,s |At
1(θ, s, d)| < maxm supθ,s X(ωt−1, θ, s, d,m):

P (sup
θ,s

|At
1(θ, s, d)| > ε̃)

≤ P [max
m

sup
θ,s

X(ωt−1, θ, s, d, m) > ε̃] (max is over all possible combinations m)

≤ P (∪m[sup
θ,s

X(ωt−1, θ, s, d,m) > ε̃]

≤
∑
m

P [sup
θ,s

X(ωt−1, θ, s, d,m) > ε̃]

≤
∑
m

P (∪M
i=1[X(ωt−1, θi, si, d, m) >

ε̃

2
]) (by (92) and (93) )

≤ M
N(t)!

(N(t)− Ñ(t))!Ñ(t)!
2 exp

{
−4δÑ(t)N̂(t−N(t))

}
(94)

where N(t)!/((N(t)−Ñ(t))!Ñ(t)!) is the number of different combinations m and 2 exp{−4δÑ(t)N̂(t−
N(t))} is the bound from (67) in Lemma 1. From the last inequality, the proof follows steps of the
argument starting after (68) in the proof of Lemma 1.

Lemma 5. Given ε̃ > 0, there exist δ > 0 and T such that ∀t > T :

P (sup
θ,s

|At
2(θ, s)| > ε̃) ≤ e−δ(N(t)−Ñ(t)) ≤ e−0.5δtγ1 (95)

Proof. From Lemma 2[∣∣At
2(θ, s, d)

∣∣ > ε̃
]

⊂
⋃

(j1,...,jN(t)−Ñ(t)):jm∈{t−N(t),...,t−1},m 6=l⇒jm 6=jl

N(t)−Ñ(t)⋂
m=1

[
||θjm − θ|| > δ̃ε̃

]
(96)
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This implies that[
sup
θ,s

∣∣At
2(θ, s, d)

∣∣ > ε̃

]
=
⋃
θ,s

[∣∣At
2(θ, s, d)

∣∣ > ε̃
]

⊂
⋃
θ∈Θ

 ⋃
(j1,...,jN(t)−Ñ(t)):jm∈{t−N(t),...,t−1},m 6=l⇒jm 6=jl

N(t)−Ñ(t)⋂
m=1

[
||θjm − θ|| > δ̃ε̃

] (97)

Since Θ is a rectangle in RJΘ it can be covered by a finite number of balls with radius δ̃ε̃

2
:

Θ ⊂ ∪M
i=1B(θi), M = const · (δ̃ε̃/2)−JΘ (98)

Let’s prove the following fact:

⋃
θ∈B(θi)

N(t)−Ñ(t)⋂
m=1

[
||θjm − θ|| > δ̃ε̃

]
⊂

N(t)−Ñ(t)⋂
m=1

[θjm /∈ B(θi)] (99)

Assume ωt−1 ∈
(⋂N(t)−Ñ(t)

m=1 [θjm /∈ B(θi)]
)c

. Then ∃m such that θjm ∈ B(θi). It follows that

∀θ ∈ B(θi),∃θjm : ||θjm − θ|| ≤ δ̃ε̃. Thus, ωt−1 belongs to the following set:

⋂
θ∈B(θi)

N(t)−Ñ(t)⋃
m=1

[
||θjm − θ|| ≤ δ̃ε̃

]
=

 ⋃
θ∈B(θi)

N(t)−Ñ(t)⋂
m=1

[
||θjm − θ|| > δ̃ε̃

]c

(100)

Therefore, the claim in (99) is proven.
By the same argument as for (76) from Lemma 2, we can establish that

P

N(t)−Ñ(t)⋂
m=1

[
θjm /∈ B(θi)

] ≤ e−4δ(N(t)−Ñ(t)) (101)

for some positive δ.
From (97), (98) and (99)[

sup
θ,s

∣∣At
2(θ, s, d)

∣∣ > ε̃

]

⊂
⋃

(j1,...,jN(t)−Ñ(t)):jm∈{t−N(t),...,t−1},m6=l⇒jm 6=jl

M⋃
i=1

N(t)−Ñ(t)⋂
m=1

[θjm /∈ B(θi)]

 (102)

Using (101) and (102) gives

P

[
sup
θ,s

∣∣At
2(θ, s, d)

∣∣ > ε̃

]
≤ N(t)!

Ñ(t)!(N(t)− Ñ(t))!
Me−4δ(N(t)−Ñ(t)) (103)

The rest of the proof follows the corresponding steps in Lemma 2.
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A.3 Convergence of posterior expectations (Theorem 3) and ergodicity of the Gibbs
sampler (Theorem 4)

Proof. (Theorem 3.) First, let’s introduce some notation shortcuts:

r = r(θ,V , ε; F (θ, ε))

r̂ = r(θ,V , ε; F̂ n(θ, ε))

1{} = 1Θ(θ) ·

(∏
i,t

1E(εt,i)p(dt,i|Vt,i)

)
·

(∏
i,t,k

1[−ν,ν](q(θ,Vt,i, εt,i, Ft,i(θ, εt,i)))

)

1̂{} = 1Θ(θ) ·

(∏
i,t

1E(εt,i)p(dt,i|Vt,i)

)
·

(∏
i,t,k

1[−ν,ν](q(θ,Vt,i, εt,i, F̂
n
t,i(θ, εt,i)))

)
∫

h(θ,V , ε)d(θ,V , ε) =

∫
h

p = p(θ,V , ε; F |d, x) =
r · 1{}∫
r · 1{}

p̂ = p(θ,V , ε; F̂ n|d, x) =
r̂ · 1̂{}∫
r̂ · 1̂{}

The probability that the approximation error exceeds ε > 0 can be bounded by the sum of two
terms:

P

[∣∣∣∣∫ h · p−
∫

h · p̂
∣∣∣∣ > ε

]
≤ P (||F − F̂ || > δF ) (104)

+ P

(
[

∣∣∣∣∫ h · p−
∫

h · p̂
∣∣∣∣ > ε] ∩ [||F − F̂ || ≤ δF ]

)
(105)

where ||F−F̂ || = sups,θ,d |F (s, θ, d)−F̂ (s, θ, d)| and F (s, θ, d) is the expected value function (or the
difference of expected value functions, depending on the parameterization of the Gibbs sampler)

and F̂ is the approximation to F from the DP solving algorithm on its iteration n (fixed in this
proof.) I will show that for a sufficiently small δF > 0, the set in (105) is empty. Then, by Theorem
2, the term in (104) can be bounded by zn corresponding to δF .

[

∣∣∣∣∫ h · p−
∫

h · p̂
∣∣∣∣ > ε] ∩ [||F − F̂ || ≤ δF ]

⊂
[∫

|p− p̂| > ε/||h||
]
∩ [||F − F̂ || ≤ δF ]

⊂

([∫
1̂{}=1{}

|p− p̂| > ε/(2||h||)

]
∩ [||F − F̂ || ≤ δF ]

)
(106)

∪

([∫
1̂{} 6=1{}

|p− p̂| > ε/(2||h||)

]
∩ [||F − F̂ || ≤ δF ]

)
(107)
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Let’s start with (106):([∫
1̂{}=1{}

|p− p̂| > ε/(2||h||)

]
∩ [||F − F̂ || ≤ δF ]

)
(108)

=

[∫
1̂{}=1{}

| r∫
r · 1{}

− r̂∫
r̂ · 1̂{}

| > ε

2||h||

]
∩ [||F − F̂ || ≤ δF ] (109)

⊂

[
|| r∫

r · 1{}
− r̂∫

r̂ · 1̂{}
|| > ε

2||h||λ

]
∩ [||F − F̂ || ≤ δF ] (110)

where λ < ∞ is the Lebesgue measure of the space for the parameters and the latent variables.
For δSp ∈ (0,

∫
r · 1{}): [

|| r∫
r · 1{}

− r̂∫
r̂ · 1̂{}

|| > ε

2||h||λ

]
∩ [||F − F̂ || ≤ δF ] =([

|| r∫
r · 1{}

− r̂∫
r̂ · 1̂{}

|| > ε

2||h||λ

]
∩ [||F − F̂ || ≤ δF ] ∩

[∣∣∣∣∫ r · 1{} −
∫

r̂ · 1̂{}
∣∣∣∣ > δSp

])
(111)

∪

([
|| r∫

r · 1{}
− r̂∫

r̂ · 1̂{}
|| > ε

2||h||λ

]
∩ [||F − F̂ || ≤ δF ] ∩

[∣∣∣∣∫ r · 1{} −
∫

r̂ · 1̂{}
∣∣∣∣ ≤ δSp

])
(112)

By Proposition 2 for δSp there exists δ1
F > 0 such that [

∣∣∫ r · 1{} −
∫

r̂ · 1̂{}
∣∣ > δSp] = ∅. Thus,

(111) is the empty set for any δF < δ1
F . Now, let’s work with (112).

|| r∫
r · 1{}

− r̂∫
r̂ · 1̂{}

|| ≤
||r|| · |

∫
r · 1{} −

∫
r̂ · 1̂{}|∫

r · 1{} ·
∫

r̂ · 1̂{}
+
||r̂ − r||∫

r̂ · 1̂{}

≤
||r|| · |

∫
r · 1{} −

∫
r̂ · 1̂{}|∫

r · 1{} · (
∫

r · 1{} − δSp)
+

||r̂ − r||∫
r · 1{} − δSp

(113)

This inequality shows that (112) is a subset of the union of the following two sets:[
||r|| · |

∫
r · 1{} −

∫
r̂ · 1̂{}|∫

r · 1{} · (
∫ ∫

r · 1{} − δSp)
>

ε

4||h||λ

]
∩ [||F − F̂ || ≤ δF ]∩

[∣∣∣∣∫ r · 1{} −
∫

r̂ · 1̂{}
∣∣∣∣ ≤ δSp

]
(114)

and [
||r̂ − r||∫

r · 1{} − δSp

>
ε

4||h||λ

]
∩ [||F − F̂ || ≤ δF ] ∩

[∣∣∣∣∫ r · 1{} −
∫

r̂ · 1̂{}
∣∣∣∣ ≤ δSp

]
(115)

I will show that both of them are empty for sufficiently small δF . By Proposition 2 there exists
δ2
F > 0 such that [∣∣∣∣∫ r · 1{} −

∫
r̂ · 1̂{}

∣∣∣∣ > ε ·
∫

r · 1{} · (
∫

r · 1{} − δSp)

4||h||λ||r||

]
= ∅
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whenever ||F − F̂ || ≤ δ2
F . Therefore, (114) is equal to the empty set for δF ≤ δ2

F . Since r is
continuous in components of F , there exists δ3

F > 0 such that

||r̂ − r|| <
ε · (
∫

r · 1{} − δSp)

4||h||λ||r||

whenever ||F − F̂ || ≤ δ3
F . Therefore, for δF ≤ δ3

F , (115) is equal to the empty set and so is (112).
Thus, so far we showed that (106) is equal to the empty set for δF ≤ mini=1,2,3(δ

i
F ).

Now, let’s work with (107). Note that∫
1̂{} 6=1{}

|p− p̂| ≤ (
||r||∫
r · 1{}

+
||r̂||∫
r̂ · 1̂{}

)

∫
1̂{} 6=1{}

1 ≤ (
||r||∫
r · 1{}

+
||r̂||∫

r · 1{} − δSp

)

∫
1̂{} 6=1{}

1 (116)

Thus, (107) is a subset of the following set:([∫
1̂{} 6=1{}

|p− p̂| > ε/(2||h||)

]
∩ [||F − F̂ || ≤ δF ]

)
(117)

⊂

∫
1̂{} 6=1{}

1 >
ε

2||h||( ||r||R
r·1{}

+ ||r̂||R
r·1{}−δSp

)

 ∩ [||F − F̂ || ≤ δF ]

 (118)

Using the same argument as the one starting from (123) in Proposition 2, I can show that there
exists δ4

F > 0 such that ∀δF < δ4
F , (107) will be the empty set. Setting δF = mini=1,2,3,4{δi

F}
completes the proof of the theorem.

Proposition 2. For any ε > 0 there exists δF > 0 such that[
||F − F̂ || < δF

]
∩
[∣∣∣∣∫ r̂ · 1̂{} −

∫
r · 1{}

∣∣∣∣ > ε

]
= ∅ (119)

Proof. [∣∣∣∣∫ r̂ · 1̂{} −
∫

r · 1{}
∣∣∣∣ > ε

]
⊂

[∫
|r̂ · 1̂{} − r · 1{}| > ε

]
⊂

[∫
1̂{}=1{}

|r̂ · 1̂{} − r · 1{}| > ε/2

]
(120)

∪

[∫
1̂{} 6=1{}

|r̂ · 1̂{} − r · 1{}| > ε/2

]
(121)

Let’s show that the intersection of (120) and [||F − F̂ || < δF ] is the empty set for a sufficiently
small δF .[∫

1̂{}=1{}

|r̂ · 1̂{} − r · 1{}| > ε/2

]
⊂

[∫
1̂{}=1{}

|r̂ − r| > ε/2

]
⊂
[
||r̂ − r|| > ε/(2λ)

]
(122)
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where λ < ∞ is the Lebesgue measure of the bounded space for the parameters and the latent
variables on which the integration is performed: Θ × E × . . . × E ×V × . . . ×V, where V ⊂ R
is the space for the alternative specific value functions Vt,d,i. By Assumption 8, r is continuous in

components of F . Thus, ∃δ1
F > 0 such that ||F − F̂ || < δ1

F implies ||r̂− r|| < ε/(2λ), which means

that the intersection of (120) and [||F − F̂ || < δF ] is the empty set for ∀δF < δ1
F .

Let’s show that the intersection of (121) and [||F − F̂ || < δF ] is the empty set for a sufficiently
small δF . First, note that∫

1̂{} 6=1{}

|r̂ · 1̂{} − r · 1{}| ≤ (||r||+ ||r̂||)
∫

1̂{} 6=·1{}
1 (123)

where ||r|| < ∞ and ||r̂|| < r < ∞ for any F̂ (everything is bounded in the model.) Thus,

[||F − F̂ || < δF ] ∩

[∫
1̂{} 6=1{}

|r̂ · 1̂{} − r · 1{}| > ε/2

]
(124)

⊂ [||F − F̂ || < δF ] ∩

[∫
1̂{} 6=1{}

1 > ε/(2(||r||+ ||r̂||))

]
(125)

= [||F − F̂ || < δF ] ∩
[
λ[1̂{} 6= 1{}] > ε/(2(||r||+ ||r̂||))

]
(126)

where λ(.) is the Lebesgue measure on the space of the parameters and the latent variables.
By Assumption 8, qk is continuous in components of F . Thus, for any δq > 0 there exists

δF (δq) > 0 such that ||F − F̂ || < δF (δq) implies maxk ||q̂k − qk|| < δq. On the space of the
parameters and the latent variables (these are not subsets of the underlying probability space):

[(θ,V , ε) : 1̂{} 6= 1{}] ⊂
⋃
i,t,k

[(θ,V , ε) : qk(θ,Vt,i, εt,i, Ft,i) ∈ Bδq(ν) ∪Bδq(−ν)] (127)

if ||F − F̂ || < δF (δq). To prove this claim assume ∀i, t, k qk(θ,Vt,i, εt,i, Ft,i) /∈ Bδq(ν)∪Bδq(−ν). So,
the distance between qk and the truncation region edges −ν and ν is larger than δq for all i, t, k.

But then, since ||q̂k − qk|| < δq, 1̂{} = 1{} and the claim (127) is proven.
Note that

lim
δq→0

λ

(⋃
i,t,k

[(θ,V , ε) : qk(θ,Vt,i, εt,i, Ft,i) ∈ Bδq(ν) ∪Bδq(−ν)]

)
(128)

≤
∑
i,t,k

lim
δq→0

λ[(θ,V , ε) : qk(θ,Vt,i, εt,i, Ft,i) ∈ Bδq(ν) ∪Bδq(−ν)]

=
∑
i,t,k

λ[(θ,V , ε) : qk(θ,Vt,i, εt,i, Ft,i) ∈ {ν,−ν}]

where the last equality holds by the monotone property of measures (the Lebesgue measure in this
case) and by the fact that ∩δq>0[qk ∈ Bδq(ν)] = [qk = ν].

By Assumption 8, λ[(θ,V , ε) : qk = ν] = λ[(θ,V , ε) : qk = −ν] = 0. Therefore, the limit in (128)

is equal to zero and there exists δ∗q > 0 such that if ||F − F̂ || < δF (δ∗q ) then

λ[1̂{} 6= 1{}] < ε/(2(||r||+ ||r̂||))
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So, ∀δF ∈ (0, δF (δ∗q )] the intersection of (121) and [||F − F̂ || < δF ] is the empty set. Setting

δF = min{δF (δ∗q ), δ
1
F} completes the proof of the proposition.

Proof. (Theorem 4)
Consider the following uniform probability density:

q(∆V , θ, ε) = c · 1Θ(θ)
∏
i,t

[1E(εt,i) · p(dt,i|∆Vt,i)

·1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])] (129)

where c is a normalization constant. The corresponding probability measure is denoted by Q(.).
Let’s show that the transition probability measure for the Gibbs sampler satisfies the marginal-

ization condition w.r.t. Q(.):

P ((Vm+1, θm+1, εm+1) ∈ A|Vm, θm, εm, d, x) ≥ bQ(A),∀Vm, θm, εm

where b > 0 is a constant. Then, the uniform ergodicity follows from Proposition 2 in Tierney
(1994).

P ((Vm+1, θm+1, εm+1) ∈ A|Vm, θm, εm, d, x) (130)

=

∫
R×...×R

∫
A

∏
t,i

p(∆Ṽm+1
t,i |θm, εm, d, x)

p(ρm+1|θm, εm, ∆Ṽm+1, d, x) · p(αm+1|ρm+1ηm, hm
ε , αm, εm, ∆Ṽm+1, d, x)

p(ηm+1| . . .) · p(hm+1
ε | . . .)

∏
t,i

p(εm+1
t,i | . . .)∏

t,i

p(∆Vm+1
t,i |θm+1, εm+1, d, x) d(∆Ṽ , θm+1, εm+1, ∆Vm+1)

where p(.|.) are the densities for the Gibbs sampler blocks. Even though the Metropolis-Hastings
is used in the blocks, the densities can be expressed by using the Dirac delta function (see, for
example, chapter 4 in Geweke (2005).)

Given the assumptions on the support of νt,i let’s show that there exist δ1 > 0 such that
∆Vt,i ∈ [−δ1, δ1] implies (∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]) ∈ [−ν, ν], ∀θ, ε. It was stated in
the formulation of the theorem that EV is an upper bound on the absolute value of the expected
value function. Note that an upper bound on the expected value function EVub exists. Let’s show
that it is no greater than EV .

E[|V (s′; θ)|; ‖s, d; θ] = E[|max{α1x + ε + βE[V (s′′; θ)|s′, d1; θ],

α2 + ν + βE[V (s′′; θ)|s′, d2; θ]}|]
≤ u + ε + E[|ν|] + βEVub (131)

It was also assumed in the theorem that Φ(−ν) < 0.25, which implies E[|ν|] ≤ 1+E[ν2] ≤ 1+2h−1
ν .

Since (131) holds for any (s, d, θ):

EVub ≤ u + ε + (1 + 2h−1
ε )

1− β
= EV
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Therefore,
|[xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]| ≤ 2(u + ε + βEV )

Let δ1 = ν − 2(u + ε + βEV ), which is positive by the assumption of the theorem. Thus, for
|∆Vt,i| ≤ δ1,

|∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]| ≤ δ1 + 2(u + ε + βEV ) = ν

To find a lower bound on the integral in (130), let’s restrict the integration over ∆Ṽm+1
t,i to

|∆Ṽm+1
t,i | ≤ δ1 and use only the parts of the block densities corresponding to the accepted draws.

The parts of the block densities for the accepted draws are equal to the MH transition densities
multiplied by the acceptance probabilities. For (∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]) ∈ [−ν, ν],
these densities for the accepted draws are positive and continuous on Θ, E, and [∆Vt,i ≥ 0] (or
[∆Vt,i < 0] depending on dt,i) for all blocks, and thus bounded away from zero. Let’s denote the
common bound by δ > 0. Then,

P ((Vm+1, θm+1, εm+1) ∈ A|Vm, θm, εm, d, x) ≥ (
∏
t,i

δ1δ)

·
∫

A

1Θ(θm+1) · δ4 ·
∏
t,i

[δ · 1E(εt,i)] ·
∏
t,i

δ · p(dt,i|∆Vt,i)

·1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

d(θm+1, εm+1, ∆Vm+1) =
1

c
(
∏
t,i

δ)2 · δ4 ·
∏
t,i

δ1 ·Q(A) (132)

Also, since Q(.) is absolutely continuous w.r.t. the posterior probability measure, the transition
probability measure for the Gibbs sampler is irreducible w.r.t. the posterior probability measure.
This completes the proof of the uniform ergodicity of the Gibbs sampler.

A.4 Auxiliary results

Proposition 3. For any {θ1, . . . , θN} and θ in Rn and any Ñ ≤ N , there exists a sequence of
rational numbers qm → θ such that for any m, qm and θ have the same set of indices for the nearest
neighbors: {k1, . . . , kÑ} defined by (13).

Proof. The outcomes of selecting the nearest neighbors can be classified into two cases. The
trivial one occurs when there exists a ball around θ with radius r such that ||θki − θ|| < r and
||θj − θ|| > r + d for d > 0 and j 6= ki. Then, applying the triangle inequality twice we get
∀q ∈ Bd/4(θ), ||θki − q|| < r + d/2 < ||θj − q|| ∀j 6= ki. For this case the proposition holds trivially.

The other case occurs when there exists a ball at θ with radius r1 such that the closure of the
ball includes all the nearest neighbors and the boundary of the ball includes one or more θj that
are not included in the set of the nearest neighbors. For this case, I will construct a ball in the
vicinity of θ such that it can be made as close to θ as needed and such that for any point inside
this ball the set of the nearest neighbors is the same as for θ.

As described in the paper body (see (13)), the selection of the nearest neighbors on the boundary
of Br1(θ) is conducted by the lexicographic comparison of (θj − θ). Let’s denote vectors (θj − θ)
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such that θj is on the boundary of Br1(θ): ||θj − θ|| = r1 by x0,i, i = 1, . . . ,M0
x . The results of the

lexicographic selection process can be represented as follows:

zk,i = (r1 − a1, . . . , rk−1 − ak−1, zk,i
k , . . . , zk,i

n )

xk,i = (r1 − a1, . . . , rk−1 − ak−1, rk − ak , xk,i
k+1, . . . , x

k,i
n ) (133)

yk,i = (r1 − a1, . . . , rk−1 − ak−1, yk,i
k , . . . , yk,i

n )

where a geometric interpretation of variables rk and ak is given in the figure below,

zk,i
k > rk − ak > yk,i

k (134)

and k = 1, . . . , K for some K ≤ n. Vectors zk,i, i = 1, . . . ,Mk
z are those vectors included in the set

of the nearest neighbors for which the decision of the inclusion was obtained from the lexicographic
comparison for the coordinate k. Vectors xk,i, i = 1, . . . ,Mk

x are the vectors for which the decision
has not yet been made after comparing coordinates k. Vectors yk,i, i = 1, . . . ,Mk

y are the vectors
for which the decision of not including them in the set of the nearest neighbors was obtained from
comparing coordinate k. Vectors xk+1,i, yk+1,i, zk+1,i are all selected from xk,i. The lexicographic
selection will end at some coordinate K with unique xK . This vector is denoted by x not by z to
emphasize the fact that if there are multiple repetitions of θ + xK = θi = θj, i 6= j in the history,
then not all the repetitions have to be selected for the set of the nearest neighbors (the ones with
larger iteration number will be selected first.) Of course, this is true only for the last selected
nearest neighbor, for all the previous ones all the repetitions are included. Note that vectors
zk,i, xk,i, yk,i are constructed in the system of coordinates with the origin at θ; so, we should add
θ to all of them to get back to the original coordinate system.

A graphical illustration might be helpful for understanding the idea of the proof (the proof was
actually constructed from similar graphical examples in R2 and R3.)

The picture shows an example, in which 2 nearest neighbors have to be
chosen for point O. Since the required number of the nearest neighbors
is smaller than the number of the points on the circle, we can always
find a1 such that all the points with the first coordinate strictly above
r1− a1 will be included in the set of the nearest neighbors and all the
points with the first coordinate strictly below r1 − a1 will not be. For
the points with the coordinate equal to r1 − a1, the selection process
continues to the next dimension.

If we did not use the lexicographic comparison and just resolved the multivaluedness of arg min
by choosing vectors with larger iteration numbers first, than the proposition would not hold ( a
counterexample could be easily found in R2.)

If the following conditions hold than the same nearest neighbors from the surface of Br1(θ) will
be chosen for (θ + b) and θ:

||b− yk,i|| > ||b− xK || > ||b− zk,i||,∀k, i (135)

The condition says that (xK + θ), which is the last nearest neighbor selected for θ, also has to
be selected last for (θ + b) and that vectors on the boundary of Br1(θ) that are not the selected
nearest neighbors for θ (yk,i,∀k, i) should not be the selected nearest neighbors for (θ + b). Since
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||yk,i|| = ||xK || = ||zk,i|| = r1, these conditions are equivalent to the following:

bT (xK − yk,i) > 0 and bT (zk,i − xK) > 0 (136)

Define

d = min
k=1,K

min{min
i

[zk,i
k − (rk − ak)], min

i
[(rk − ak)− yk,i

k ]}, d > 0 by construction.

For given ε1 > 0, let

εk+1 = min{εk, εkd/(4nr1)}, ε(ε1) = (ε1, . . . , εn)

δ(ε1) = εnd/(8nr1) (137)

Let b ∈ Bδ(ε1)(ε(ε1)) and l = b− ε(ε1). Let’s show that (136) holds for any such b.

bT (xK − yk,i) = (rk − ak − yk,i
k )εk +

n∑
m=k+1

(xK
m − yk,i

m )εm +
n∑

m=k

(xK
m − yk,i

m )lm (138)

Note that |lk| ≤ δ(ε1) and |xK
m − yk,i

m | ≤ 2r1:

bT (xK − yk,i) ≥ (rk − ak − yk,i
k )εk − n2r1 max

m=k+1,n
εm − n2r1δ(ε1) (139)

≥ dεk − n2r1
εkd

4nr1

− n2r1
εkd

8nr1

= dεk/4 > 0 (140)

Analogously,

bT (zk,i − xK) ≥ [zk,i
k − (rk − ak)]εk +

n∑
m=k+1

(zk,i
m − xK

m)εm +
n∑

m=k

(zk,i
m − xK

m)lm (141)

≥ dεk − n2r1 max
m=k+1,n

εm − n2r1δ(ε1) ≥ dεk/4 > 0 (142)

Thus, the order of selecting the nearest neighbors on the surface of Br1(θ) is the same for θ and
any θ + b if b ∈ Bδ(ε1)(ε(ε1)) for any ε1 > 0. Making ε1 sufficiently small, we can guarantee that
all θj satisfying ||θj − θ|| < r1 will be chosen as the nearest neighbors for θ + b before the vectors
on the surface of Br1(θ) and that θj satisfying ||θj − θ|| > r1 will not be chosen at all. For any
ε1 > 0, Bδ(ε1)(θ + ε(ε1)) will contain rational numbers. Letting a positive sequence {εm

1 } go to zero
and choosing qm ∈ Bδ(θ + εm) ∩Q will give the sought sequence {qm}.

Proposition 4. If Θ and S are compact, u(s, d; θ) is continuous in (s, θ), and f(s′ | s, d; θ) is
continuous in (θ, s, s′), then V (s; θ) and E{V (s′; θ)|s, d; θ} are continuous in (θ, s).

Proof. The proof of the proposition follows closely the standard proof of the continuity of value
functions with respect to the state variables (see, for example, chapters 3 and 4 of Stokey and
Lucas (1989).) Let’s consider the Bellman operator Γ on the Banach space of bounded functions
B with sup norm: V : Θ× S → X, where X is a bounded subset of R:

Γ(V )(s; θ) = max
d
{u(s, d; θ) + β

∫
V (s′; θ)f(s′|s, d; θ)ds′}
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Blackwell’s sufficient conditions for contraction are satisfied for this operator; so, Γ is a contraction
mapping on B. The set of continuous functions C is a closed subset in B. Thus, it suffices show
that Γ(C) ⊂ C (this trivially implies that the fixed point of Γ is a continuous function.)

Let V (s; θ) be a continuous function in B (V ∈ C). Let’s show that Γ(V ) is also continuous.

|Γ(V )(s1; θ1)− Γ(V )(s2; θ2)| (143)

≤ max
d
|u(s1, d; θ1)− u(s2, d; θ2) + β

∫
V (s′; θ1)f(s′|s1, d; θ1)ds′ − β

∫
V (s′; θ2)f(s′|s2, d; θ2)ds′|

≤ max
d
|u(s1, d; θ1)− u(s2, d; θ2)|

+β max
d
|
∫

[V (s′; θ1)f(s′|s1, d; θ1)− V (s′; θ2)f(s′|s2, d; θ2)]ds′| (144)

Given ε > 0 there exists δ1 > 0 such that ||(s1; θ1) − (s2; θ2)|| < δ1 implies maxd |u(s1, d; θ1) −
u(s2, d; θ2)| < ε/2.

|
∫

[V (s′; θ1)f(s′|s1, d; θ1)− V (s′; θ2)f(s′|s2, d; θ2)]ds′| (145)

≤ max
d

sup
s′
|V (s′; θ1)f(s′|s1, d; θ1)− V (s′; θ2)f(s′|s2, d; θ2)| · λ(S) (146)

Since V (s′; θ)f(s′|s, d; θ) is continuous on compact Θ × S × S, for ε > 0 there exists δd
2 > 0 such

that ||(s1, s
′; θ1)− (s2, s

′; θ2)|| = ||(s1; θ1)− (s2; θ2)|| < δd
2 implies

sup
s′
|V (s′; θ1)f(s′|s1, d; θ1)− V (s′; θ2)f(s′|s2, d; θ2)| <

ε

2λ(S)

Thus, for δ = min{δ1, mind δd
2}, ||(s1; θ1) − (s2; θ2)|| < δ implies |Γ(V )(s1; θ1) − Γ(V )(s2; θ2)| < ε.

So, Γ(V ) is a continuous function.
The continuity of E{V (s′; θ)|s, d; θ} follows from the continuity of V (s′; θ) by an argument

similar to the one below equation (145).

Proposition 5. Assumption 7 holds if Θ and S are compacts, V (s; θ) and E[V (s′; θ) | s, d; θ] are
continuous in (θ, s), and f(s′ | s, d; θ)/g(s′) is continuous in (θ, s, s′) and satisfies Assumption 4.

Proof. Let’s introduce the following notation shortcuts. T will denote the number of terms in
the sum defining X(ωt−1, θ, s, d,m). Consider two arbitrary points: (θ1, s1) and (θ2, s2), let V i

j =

V (sj; θi)− EV (θi, si) and

W i
j =

f i
j/g

i
j∑

f i
k/g

i
k

=
f(sj | si, d; θi)/g(sj)∑
f(sk | si, d; θi)/g(sk)
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Then,

|X(ωt−1, θ1, s1, d, m)−X(ωt−1, θ2, s2, d, m)| = |
T∑

j=1

V 1
j W 1

j −
T∑

j=1

V 2
j W 2

j ±
T∑

j=1

V 2
j W 1

j |

≤ |
T∑

j=1

(V 1
j − V 2

j )W 1
j | (147)

+|
T∑

j=1

V 2
j (W 1

j −W 2
j )| (148)

By the proposition’s hypothesis, V (s; θ) and E[V (s′; θ) | s, d; θ] are continuous in (θ, s) on a
compact set. Thus, given ε > 0 ∃δ1 > 0 such that

||(θ1, s1, s
j)− (θ2, s2, s

j)|| = ||(θ1, s1)− (θ2, s2)|| < δ1

implies |V (sj; θ1) − EV (θ1, s1) − (V (sj; θ2) − EV (θ2, s2))| < ε/2 . Since the weights sum to one,
(147) is bounded above by ε/2. Let’s similarly bound (148):

|
T∑

j=1

V 2
j (W 1

j −W 2
j )| =

∣∣∣∣∣
T∑

j=1

V 2
j (

f 1
j /g1

j∑
f 1

k/g1
k

−
f 2

j /g2
j∑

f 2
k/g2

k

)

∣∣∣∣∣
=

∣∣∣∣∣(
∑

f 2
k/g2

k)
[∑

V 2
j (f 1

j /g1
j − f 2

j /g2
j )
]
+ [
∑

f 2
k/g2

k −
∑

f 1
k/g1

k]
(∑

V 2
j f 2

j /g2
j

)∑
f 1

k/g1
k ·
∑

f 2
k/g2

k

∣∣∣∣∣
≤

V ·maxj |f 1
j /g1

j − f 2
j /g2

j | · T
fT

+
T ·maxj |f 1

j /g1
j − f 2

j /g2
j | · V · f · T

f 2T 2

≤ max
j
|f 1

j /g1
j − f 2

j /g2
j | · V (

1

f
+

f

f 2 ) (149)

where f and f are the upper and lower bounds on f/g introduced in Assumption 4; V < ∞ is an

upper bound on V i
j . Since f(s′ | s, d; θ)/g(s′) is continuous in (θ, s, s′) on compact Θ× S × S, for

any ε > 0 there exists δ2 > 0 such that ||(θ1, s1, s
j)− (θ2, s2, s

j)|| = ||(θ1, s1)− (θ2, s2)|| < δ2 implies

|f(sj | s1, d; θ1)/g(sj)− f(sj | s2, d; θ2)/g(sj)| < ε/2

||V ||( 1
f

+ f
f2 )

, ∀j

Thus, (148) is also bounded above by ε/2. For given ε > 0, let δ = min{δ1, δ2}. Then, ||(θ1, s1)−
(θ2, s2)|| < δ implies |X(ωt−1, θ1, s1, d, m)−X(ωt−1, θ1, s1, d, m)| < ε/2 + ε/2 = ε

Proposition 6. Assume, that in the DP solving algorithm, the same random grid over the state

space is used at each iteration: sm1,j = sm2,j = sj for any m1, m2, and j, where sj iid∼ g(.). If the
number of the nearest neighbors is constant: γ2 in Assumption 6 is equal to zero and Ñ(t) = Ñ ,
then all the theoretical results proven in the paper will hold.

59



Proof. Only the proof of Lemma 1 is affected by the change since in the other parts I use only one
fact about the weights in the importance sampling: the weights are in [0, 1]. Thus let’s show that
Lemma 1 holds.

In Lemma 1 the terms in the sum (64) corresponding to the same sj should be grouped into
one term multiplied by the number of such terms:

P (X(ωt−1, θ, s, d, m) > ε̃) (150)

= P

| N̂(max{mi})∑
j=1

Mj(t,m)(V (sj; θ)− E[V (s′; θ) | s, d; θ])f(sj | s, d; θ)/g(sj)∑N̂(max{mr})
r=1 Mr(t,m)f(sr | s, d; θ)/g(sr)

| > ε̃


≤ P

| N̂(max{mi})∑
j=1

Mj(t,m)(V (sj; θ)− E[V (s′; θ) | s, d; θ])f(sj | s, d; θ)/g(sj)| > ε̃fN̂(max{mi})


where Mj(t,m) ∈ {1, . . . , Ñ(t)} denotes the number of the terms corresponding to sj and N̂(max{mr})
is the largest grid size. The inequality above follows since

N̂(max{mi})∑
j=1

Mj(t,m)f(sj | s, d; θ)/g(sj) ≥ fN̂(max{mi})

.
The summands in (150) are bounded by (Ña, Ñb), where a and b where defined in Lemma 1.

Application of Hoeffding’s inequality to (150) gives

P (X(ωt−1, θ, s, d, m) > ε̃)

≤ 2 exp
{
−4δÑN̂(max{mi}

}
≤ 2 exp

{
−4δÑN̂(t−N(t))

}
(151)

where 0 < δ = ε̃2f 2/(2(b−a)2Ñ3). The rest of the argument follows the steps in Lemma 1 starting
after (67).

Proposition 7. This proposition shows how to relax Assumption 4 for the state transition density
and correspondingly change the DP solving algorithm so that the theoretical results proved in the
paper would hold. Let the state space be a product of a finite set and a bounded rectangle in RJSc

S = Sf × Sc. Let f(s′f , s
′
c|sf , sc; θ) be the state transition density with respect to the product of the

counting measure on Sf and the Lebesgue measure on Sc. Assume for any sf ∈ Sf and d ∈ D
we can define S(sf , d) ⊂ S such that f(s′f , s

′
c|sf , sc, d; θ) > 0 for any (s′f , s

′
c) ∈ S(sf , d) and any

sc ∈ Sc and for any (s′f , s
′
c) /∈ S(sf , d) and any sc ∈ Sc f(s′f , s

′
c|sf , sc, d; θ) = 0. For each sf ∈ Sf

let density gsf
(.) be such that for any sf ∈ Sf

inf
θ∈Θ,s′f ,s′c∈S(sf ),sc∈Sc

f(s′f , s
′
c|sf , sc, d; θ)/gsf ,d(s

′
f , s

′
c) = f > 0

sup
θ∈Θ,s′f ,s′c∈S(sf ),sc∈Sc,d∈D

f(s′f , s
′
c|sf , sc, d; θ)/gsf ,d(s

′
f , s

′
c) = f < ∞
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In the DP solving algorithm generate the random grid over the state space for each discrete state
sf ∈ Sf and decision d ∈ D : sm,j

sf ,d ∼ gsf ,d(.) and use these grids in computing the approximations

of the expectations E(V (s′; θ)|sf , sc, d; θ). Then, all the theoretical results stated in the paper hold.
If the transition for the discrete states is independent from the the other states, then a more

efficient alternative would also work. Let’s denote the transition probability for the discrete states
by f(s′f |sf , d; θ). Suppose that for f(s′c|sc, d; θ) and some g(.) defined on Sc Assumption 4 holds,

and the random grid sm,j
c is generated only on Sc from g(.). Consider the following approximation

of the expectations in the DP solving algorithm:

Ê(m)[V (s′; θ)|sf , sc, d; θ]

=
∑

s′f∈Sf (sf ,d)

f(s′f |sf , d; θ)

Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(s′f , s
ki,j; θki)f(ski,j | s, d; θ)/g(ski,j)∑Ñ(m)

r=1

∑N̂(kr)
q=1 f(skr,q | s, d; θ)/g(skr,q)

(152)

where Sf (sf , d) denotes the set of possible future discrete states given the current state sf and
decision d. Then, all the theoretical results stated in the paper hold.

Proof. Given the assumptions made in the first part of this proposition, the proofs of Lemma 1
and its uniform extension Lemma 4 apply without any changes. The rest of the results are not
affected at all.

If (152) is used for approximating the expectations then in the proof of Lemmas 1 and 4 let’s
separate the expression for X(.) into K = card(Sf (sf , d)) terms corresponding to each possible
future discrete state:

X(ωt−1, θ, s, d,m) =

f(s′f,1|sf , d; θ) {
Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(s′f,1, s
ki,j; θki)f(ski,j|sc, d; θ)/g(ski,j)∑Ñ(m)

r=1

∑N̂(kr)
q=1 f(skr,q|sc; θ)/g(skr,q)

−E[V (s′; θ)|s′f = s′f,1, sc, d; θ]}
+ . . . (153)

+ f(s′f,K |sf , d; θ) {
Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(s′f,K , ski,j; θki)f(ski,j|sc, d; θ)/g(ski,j)∑Ñ(m)
r=1

∑N̂(kr)
q=1 f(skr,q|sc; θ)/g(skr,q)

−E[V (s′; θ)|s′f = s′f,K , sc, d; θ]}
Then, applying the argument from Lemmas 1 and 4 we can bound the following probabilities for
k = 1, . . . , K:

P [|f(s′f,k|sf , d; θ)

Ñ(m)∑
i=1

N̂(ki)∑
j=1

V ki(s′f,k, s
ki,j; θki)f(ski,j|sc, d; θ)/g(ski,j)∑Ñ(m)

r=1

∑N̂(kr)
q=1 f(skr,q|sc; θ)/g(skr,q)

(154)

−E[V (s′; θ)|s′f = s′f,k, sc, d; θ]| > ε

K
] (155)

and Lemmas 1 and 4 will hold. The proofs of the other Lemmas are not affected at all since the
weights on the value functions in expectation approximations are still non-negative and sum to
1.
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Proposition 8. If xt, zt, and yt are integer sequences with limt→∞ yt/zt = 0, limt→∞ zt = ∞, and
lim supt→∞ zt/xt < ∞ then ∀δ > 0 ∃T such that ∀t > T

e−δxt
zt!

(zt − yt)!yt!
≤ e−0.5δxt

Proof.

log

[
e−δxt

zt!

(zt − yt)!yt!

]
= −δxt +

zt∑
i=zt−yt+1

log(i)−
yt∑

i=1

log(i)

≤ −δxt +

∫ zt+1

zt−yt+1

log(i)di−
∫ yt

1

log(i)di

= −δxt + (zt + 1) log(zt + 1)− (zt − yt + 1) log(zt − yt + 1)− [(zt + 1)− (zt − yt + 1)]

− {yt log(yt)− 1 log(1)− [yt − 1]}
= −δxt + zt[log(zt + 1)− log(zt − yt + 1)] + yt[log(zt − yt + 1)− log(yt)]

+ log(zt + 1)− log(zt − yt + 1)− yt log(yt)− 1

≤ −δxt + zt log
zt + 1

zt − yt + 1
+ yt log

zt − yt + 1

yt

+ log
zt + 1

zt − yt + 1

= xt

[
−δ +

zt

xt

log
zt + 1

zt − yt + 1
+

(zt − yt + 1)yt

xt(zt − yt + 1)
log

zt − yt + 1

yt

+
1

xt

log
zt + 1

zt − yt + 1

]
(156)

≤ −0.5δxt,∀t > T

There exists such T that the last inequality holds since all the terms after −δ in square brackets
of (156) converge to zero. Exponentiating the obtained inequality completes the proof.

Proposition 9. For any δ1 > 0 and δ2 > 0 there exist δ > 0 and T such that ∀t > T :

t−1∑
i=t−m(t)N(t)

N̂(i)
[
e−δ1Ñ(i)N̂(i−N(i)) + e−δ2(N(i)−Ñ(i))

]
≤ exp{−δtγ0γ1} (157)

Proof. The following inequalities will be used below:

t−m(t)N(t) ≥ t− t− tγ0

N(t)
N(t) = tγ0 (158)

t−m(t)N(t) ≤ t− (
t− tγ0

N(t)
− 1)N(t) ≤ tγ0 + tγ1 < 2tγ0 (159)

Ñ(t−m(t)N(t)) = [(t−m(t)N(t))γ2 ] ≥ [tγ0γ2 ] ≥ tγ0γ2 − 1 ≥ 0.5tγ0γ2 , ∀t > T1 = 21/(γ0γ2) (160)

N(t−m(t)N(t)) = [(t−m(t)N(t))γ1 ] ≤ (2tγ0)γ1 ≤ 2γ1tγ0γ1 (161)
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N̂(t−m(t)N(t)−N(t−m(t)N(t))) = [(t−m(t)N(t)−N(t−m(t)N(t)))γ1−γ2 ]

≥ (tγ0 − 2γ1tγ0γ1)γ1−γ2 − 1, by (158) and (161)

≥ tγ0(γ1−γ2)

2γ1−γ2
− 1, ∀t > 2(1+γ1/(γ0(1−γ1))

≥ tγ0(γ1−γ2)

21+γ1−γ2
, ∀t > T2 = max{2(1+γ1−γ2/(γ0(γ1−γ2)), 2(1+γ1/(γ0(1−γ1))} (162)

Combining (160) and (162) gives:

exp{−δ1Ñ(t−m(t)N(t))N̂(t−m(t)N(t)−N(t−m(t)N(t)))}

≤ exp{− δ1t
γ0γ1

22+γ1−γ2
} = exp{−δ̃1t

γ0γ1} (163)

where the last equality defines δ̃1 > 0.

N(t−m(t)N(t))− Ñ(t−m(t)N(t)) = [(t−m(t)N(t))γ1 ]− [(t−m(t)N(t))γ2 ]

≥ [tγ0γ1 ]− [2γ2tγ0γ2 ], by (158) and (159)

≥ tγ0γ1 − 1− 2γ2tγ0γ2

≥ 0.5tγ0γ1 , for t larger than some T3 (164)

where such T3 exists since (0.5tγ0γ1 − 1− 2γ2tγ0γ2) →∞.
Taking an upper bound on summands in (157) and multiplying it by the number of terms in

the sum gives the following upper bound on the sum:

t−1∑
i=t−m(t)N(t)

N̂(i)
[
e−δ1Ñ(i)N̂(i−N(i)) + e−δ2(N(i)−Ñ(i))

]
≤ ((t− 1)− (t−m(t)N(t)) + 1)

×N̂(t− 1)
[
e−δ1Ñ(t−m(t)N(t))N̂(t−m(t)N(t)−N(t−m(t)N(t))) + e−δ2(N(t−m(t)N(t))−Ñ(t−m(t)N(t)))

]
(165)

Inequalities in (163), (164), and (165) imply:

t−1∑
i=t−m(t)N(t)

N̂(i)
[
e−δ1Ñ(i)N̂(i−N(i)) + e−δ2(N(i)−Ñ(i))

]
≤ t1+γ1−γ2(exp{−δ̃1t

γ0γ1}+ exp{−0.5δ2t
γ0γ1})

≤ 2t1+γ1−γ2 exp{−min(δ̃1, 0.5δ2)t
γ0γ1} (166)

where δ̃1 was defined in (163).

Note that (2t1+γ1−γ2 exp{−0.5 min(δ̃1, 0.5δ2)t
γ0γ1}) → ∞ and therefore ∃T ≥ max(T1, T2, T3)

such that ∀t > T
2t1+γ1−γ2 exp{−min(δ̃1, 0.5δ2)t

γ0γ1} ≤ exp{−δtγ0γ1} (167)

where δ = 0.5 min(δ̃1, 0.5δ2). This completes the proof.
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Proposition 10. For any a > 0 and δ > 0,
∑∞

t=1 exp{−δta} < ∞
Proof. Sketch. The sum above is a lower sum for the following improper integral

∫∞
0

exp{−δta}dt.
One way to show that it is finite is to do a transformation of variables y = ta, then bound the
obtained integral by an integral of the form

∫∞
0

yn exp{−δy}dy, where n is an integer. It follows
by induction and integration by parts that this integral is finite.

B Appendix. Direct search procedure for finding a fixed point

x1=f(x0)

|x1-x0|<d Yes x=x1

No

x1>x0 YesNo

a0=x0
a1=x1

x0=a1+(a1-a0)M
x1=f(x0)

|x1-x0|<d Yes x=x1

x1>x0

No

Yes

No

b0=x0
b1=x1

x0 = (a1*b0-b1*a0) / (b0-b1+a1-a0)
x1=f(x0)

|x1-x0|<d x=x1Yes

No

x1>x0 Yes a0=x0
a1=x1Nob0=x0

b1=x1

b0=x0
b1=x1

x0=b1+(b1-b0)M
x1=f(x0)

|x1-x0|<dYesx=x1

x1<x0

No

Yes

No

a0=x0
a1=x1

Find
a0,a1,b0,b1

Iterate till
convergence

Figure 11: Flow chart of a direct search procedure for finding a fixed point.

The procedure takes advantage of the fact that Vw converges monotonically. f(.) in the flowchart
denotes a mapping that takes Vw as an input and returns an updated value of Vw iterating (38) and
(39) once. The algorithm searches for a fixed point x = f(x). First, the algorithm finds bounds
a0, a1, b0, b1: a0 < a1 = f(a0) ≤ x ≤ b1 = f(b0) < b0 starting with x0 = Vw obtained from (39).
A scaling factor M is chosen experimentally. Updated Vw is obtained by cutting interval [a1, b1]
in proportions (a1 − a0) : (b0 − b1). Note that this updated Vw is chosen to be the fixed point of
a linear approximation to f(.), as illustrated in Figure 12. After each iteration on (38), and (39)
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the difference f(Vw)−Vw is compared to a tolerance parameter d. If the convergence has not been
achieved a0, a1, b0, b1 are updated and the procedure is repeated.

Figure 12: Geometric interpretation of the direct search procedure.
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