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1 Introduction

Why do firms merge? Two strands of the economic litcrature try to answer this question. Since
the beginning of the 80’s, Industrial Organization economists have tried to find a simple model to
explain why firms merge. In their paper, Salant et al [17] show that under a quantity-competition
framework, unless synergies are important or a majority of firms are involved (more than 80 percent
of firms), merged firms (insiders) losc whilc other firms (outsiders) gain.! Deneckere and Davidson

[3] state clearly the problem.

The incentive to merge in noncooperative oligopoly models depends on the interaction
of two basic forces. First, a merger allows coalition partners to absorb a negative
externality. (...) Second, the merger elicits a spiral of responses from rival firms. (...)
In quantity-setting games, (...) the response of other industry members tends to hurt
coalition partners because in these games reaction functions are typically downward

sloping.?

Some authors have proposed alternative approaches. Kamien and Zang [11] present a three-stage
model. The first stage is the acquisition phase where firms bid to acquire other firms. In the
second stage, merged firms (the parent firm) decide how many divisions (old independent firms)
will produce a strictly positive quantity of goods. In the last stage, divisions of every parent firm
compete in a Cournot game. This approach differs from the Salant et al [17] model. Implicitly,
Salant et al [17] assume that all firms involved in a merger act post-merger as a unique cntity.
With their model, Kamien and Zang [11] find that 50 percent of market firms must be involved
in the merger to gain from the merger. Creane and Davidson [2]® continue in the same way and
propose a model in which the parent firm can use a different strategy with their divisions. They
show that the merger could be beneficial if the parent firm uses a structure in which divisions
announce sequentially the quantity they will produce. This Stackelberg game. which is played by
divisions in combination with a Cournot game with the other firms, leave insiders with a gain and

outsiders with a loss. Moreover, they find that only a small number of firms must be involved in

IDeneckere and Davidson [3] work on a price competition model. They find that both insiders and outsiders gain
but outsiders do better than insiders.

2Deneckere and Davidson [3], page 484.

3Huck, Konrad and Miiller [9] present similar models with same results.



the merger. They argue that other kind of strategies can be used to increase the market power of
the merging firm. As such, they provide an answer to the merger paradox.*

Finance Economists have also studied mergers. They use financial incentives to study conditions
under which a merger could be beneficial to insiders.® While some authors look at the management

6 one of the most important approach relates to the optimality of using internal financing

incentives,
versus external financing. Tn a frictionless capital market framework, Modiglani and Miller [15]
show that the capital structure (internal or external financing) of firms docs not affect a firm market
value. But some economists argue that the equivalence between internal versus external financing
does not hold. Alchian [1] and Williamson [20] were the first to argue that headquarters are able to
monitor production and effort more effectively than outsiders. Then, mergers could be beneficial
if this problem of monitoring leads to an inefficient allocation of capital for pre-merger firms.
Gertner et al [7] present a model in which headquarters can use the surplus of external capital
from given project for financing another project. They argue that this internal capital market
increases monitoring incentives, decreases entrepreneurial incentives and redeploys financial assets
more efficiently. Stein [18] uses another approach. He supposes that the headquarter is able to
enact a winner-picking process which consists of the allocation of the constrained capital to the
division which provides a better return. Stein [18] supposes that the headquarters have a better
knowledge than outsider investors to allocatc more effectively. Consequently, the headquarter is
able to reallocate capital as the state of nature is revealed and can reassign capital to the good
project from the bad one.

Besides the question of the difference between internal and external capital, the imperfection
of the financial market could explain why firms merge. The risk is transferred to the financial
market and risk-averse shareholders gain from a decrease in the net revenue variance. When the
financial market is not perfect, shareholders can be better off by merging their firm with another.
If firms have negatively correlated revenues, the merger will decrease the firm’s revenue variance by
using an internal financial market. However, if firms have positively corrclated revenues, it could
happen that the increase in the revenue variance will decrease the effect of the financial market
imperfection and leave the merged firm with a net gain.

This paper studies this question. In their paper, Inderst and Miiller [10] present a model in
which a firm must decide to centralize or decentralize borrowing. With the first option, investors
and firms can sign a financial contract which is more efficient than contracts signed when borrowing
is decentralized. Implicitly, Inderst and Miiller [10] assume that the cost to enforce a contract is
quite low. So, the agent must respect the contract in any period. When the cost of enforcing a
contract is important and the mobility cost for an agent to quit the contract is quite low, the lack
of a binding commitment becomes a problem. Indeed, one agent could have the incentive to break
the ex-ante optimal contract after the state of nature is revealed. This problem of commitment in
risk-sharing contracts can lead to inefficiencies. To avoid this problem, long term contracts must
be self-enforcing, which means that no agent could gain by breaking the contract in all possible

contingencies.

4Pepall, Richards and Norman [16 define the merger paradox as the difficulty to construct a simple economic
model which lcaves insiders with a gain even if they do not merge in a monopoly.

5Hubbard [8] gives a survey of the literature on financial constraints.

6For example, see McNeil, Niehaus and Powers [14].



T use this approach to study in which condition a merger could be beneficial for shareholders.
Particularly, I want to study the effects of self-enforcing constraints on the efliciency of mergers.
A self-enforcing contract is such that, in all possible states of nature, the firm and the borrower
must have an incentive to respect the contract. This approach was first introduced by Thomas
and Worrall [19]. In their model, agents agree on signing an insurance contract at time 0. Then,
at the beginning of each subsequent period, the state of nature is revealed to both agents. Each
agent must decide whether to respect the contract or not. If both of them decide to respect the
contract, then the transfer of wealth occurs along the terms specilied in the contract. If one decides
to break the contract, then no wealth is transferred and it is not possible for the agent to sign
another contract in the future. If a given contract, which can be viewed as a series of transfers,
is such that in any state of nature and for any period, cach agent gains more in respecting the
contract than in breaking it, then this contract is said to be self-enforcing.

Since general results are hard to provide, T study the case where utility functions exhibit
constant rclative risk aversion (CARA). I begin by explicitly solving the self-enforcing contract
problem when agents have CARA utility functions and there are two states of nature. From the
optimal solution, I am able to draw the Pareto frontier in the context where first-best contracts
are feasible and when there is no such feasible contract. Second, T look at the effects of a change
in the distribution of the random revenue on the optimal contract. T show that an increase in the
variance leads to an increase of the range of the discount factor for which the optimal contract is
non trivial. Finally, I find that a merger may or may not be beneficial for merged firms depending
on the discount rate and the correlation between firm’s revenues.

The paper is divided as follows. In Section 2, T present the model which is then solved explicitly
with CARA utility functions in Section 3. T analyze the effect of a change in the variance of revenues
in Section 4. In Section 5, I study the benefit of a merger in the self-enforcing context. Section 6

provides concluding remarks.

2 Model

The problem is to design an insurance contract between two infinitely-lived risk-averse agents. I
suppose that the state of the economy is i.2.d. over the finite set § = {1,2,...,|S|}. The revenue of
agent 1 can take values y1, .... ys while agent 2 has a constant revenue w. By convention, ys > ys_1.
I denote by gyt the realization of agent 1’s revenue in period ¢.

The utility functions for agents 1 and 2 are respectively u(c}) and v(c?) where ¢t is the consump-
tion of agent 7 in period t. I suppose that the utility functions are twice continuously differentiable
and strictly concave. Total consumption must satisfy ¢} +c? < y* +w for any y* € {y1,v2,....¥s }-

Let hy = (81, 82.83,...,5¢:—1) be the history of realized states of the world at period ¢. The
insurance contract § consists of a series of transfers which in any given period depend on the
history and the current state of the world. Let by (hy, s) be the transfer from agent 1 to agent 2
in period t when the history is /i; and the state of nature at period t is s. The transfer could be
positive or negative. Consumption in period ¢ can then be expressed as function of the revenue
and the transfer (¢} =y, — b (hs, ) and ¢ = W + by (e, 8)).

Now, let E% be the operator expectation over s conditional on h; 1 and let 8 be the discount



rate. I define U (6;h;) and V (8; hy) as the expected net gain for all periods ¢, + 1, + 2,... for
agents 1 and 2 respectively,

U (8;hy) =E! lZ,BT‘t [u(ys — br (hrs8)) —u (ys)}]

T=t

V (8;hs) = E lz B o (@ by (hry8)) — v (m)]]
T=t
An optimal contract is a contract § such that agent 1 maximizes his expected utility when agent

2 obtains a given level of expected utility. This optimal contract is the solution which maximizes:
U(d.h) = E[ulys —bi(h,s)) —ulys) + BU (3,h)] (1)
subject to
V(6.h1) = El[v@+bi(h.s))—v (@) +BV(&.h)] > V

The solution to the maximization problem (1) is first-best. This contract is such that
w' (cf) /o' (c}) is constant for all periods ¢ and for all states of nature s.

The first-best contract introduces a potentially large transfer from one agent to the other. In
some circumstances, it is conceivable that an agent would prefer reneging on the contract rather
than making a transfer to the other agent. If contract enforcement is costly, nothing can prevent
an agent from doing so.

I now study this case explicitly. I suppose that each agent can leave the contract at any moment.
If an agent leaves the contract, I assume the he remains in autarky forever thereafter. For the
contract to hold, each agent must have incentives to respect the contract in every period and for
every history. To take this into account, I must add self-enforcing constraints to the problem. The

optimal self-enforcing contract is derived by solving

MAX U (6,hy) (2)
subject to
w(ys — by (hr,8)) —u(ys)+ 8U (8, hr41) > O T=1,2,... VseS, Vh,
v (@+ by (hry$)) — v (@) + BV (0,hryy) > 0 r1=12.. Vs€S, VYh,

The additional constraints state that, in any period and state, each agent must have a non-
negative surplus from the relationship.

There always exists a self-enforcing contract. The contract where no transfer is made in any
period is trivially self-enforcing. T call this contract the trivial self-enforcing contract (TSEC).

Let Et (bs_1. $+_1, 8¢) be the first-best transfer at period ¢ in state s; when the transfer at period



t — 1 was b;_; and the state of nature was s;_;. In other words, Et (bt_1,8¢—1,8¢) is such that

u’ (yt_l — btfl) ’LL’ (ys _’gt (btfl', St—1. 8t)>
v’ (E"i_bt*l) a V! (w +Zt (btfl,stfl,st)>

Thomas and Worrall [19] show that the optimal contract has the following characterization.

1. For any state of nature s, there exists a non-empty interval [% E] such that by (hy, s) belongs

to this interval.

2. For any history h; and state of nature s,

bs ifbi>gt (be—1,8t—1,5¢)
be (he,s) = gt (bs—1,8¢1,5¢) ifgt (bi—1,8¢1,5¢) € [b_s E] (3)
by if by < by (bs—1,5¢1,5¢)

The optimal contract is as close as possible to the first-best contract subject to self-enforcing

constraints which implicitly define the set of b, and bs.

3 CARA utility functions

To be able to solve explicitly (2), T use a specific form of utility functions and add some constraints
to the problem structure. In this section, T use a constant absolute risk aversion (CARA) utility

function, i.e.

(ht,s)) = _emr(et(he)

e a(F(hess))
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where 7 and ¢ are respectively the risk aversion parameter of agent 1 and agent 2. With this

assumption about the form of the utility function, the problem becomes:

MAX EY| e r@'=bho) 4 o=’ 4 577 (5, hy) W
subject to
E;‘ _efq(m+b1 (hlvs)) —+ e_qm + BV (52 h2) 2 V
e b ) T L BET[U (B hes)] > 0 T=12.. Vs€S. Vh
e 0@Fb(hes)) | =00 L BETIV (8, heyq)] > 0 7=1,2,... Vs€S, Vh,

It is possible to characterize first-best contracts using simple manipulations. To do so, I must

differentiate (4) without the self-enforcing constraints with respect to two different states of nature



at two different periods.

W (g = be (hens) o (g = br (B, 2)
u (W+ by (hy,s)) ' (W by (hy,2))
re—T(Us—bi(he,s)) re—T(Wz—br(hr,2))
qe—a@Tb(he®) T ge—a(@tb, (hr2)

7(ys — bt (he;8)) — q(W + by (he,s)) = 7(y> — br (hr.2)) — q(W + br (hr, 2))
And T obtain:

br (hr,2) = b (he,s) + (v — ) ()

(r+4q)

This gives the relation between each possible transfer in each possible state of nature and at
every period. Equation (5) tells us that the optimal transfer at a specific period in a specific state
of nature is linear in the revenues of both agents. Here, there are optimal contracts for special

cases.

e Tfagent 2 hasa random revenue wy, then the first-best contract is characterized by b, (h,, z) =

be (he; 8) + gy (W= — ys) + gy (ws — w)-

e If agent 1 and agent 2 have the same risk-aversion coefficient (r = ¢), then b, (h,,z) =
be (he; 8) + 5 (ys = Ys)-

e If agent 2 is risk nentral (¢ = 0), then b, (hr,2) = bt (he, 8) + ¥z — Ys-

Throughout the rest of the paper, unless I explicitly suppose something else, I assume that
agents have the same risk-aversion coefficient (¢ = r). This facilitates the explicit characterization
of the optimal contract.”

Also, to be able to explicitly solve the problem, T constrain the number of states of nature to

two. With more states, the problem rapidly becomes intractable.

3.1 Conditions for a non-trivial solution

Let’s say that a contract ¢’ is stationary if the transfer in state 1 is b} and the transfer in state 2
is by, no matter what the history is. The next two lemmas are derived from Propositions 4.1 and
4.2 of Kocherlakota [12].

Lemma 1 If the optimal contract §* is first-best, then §* is stationary.

Proof. If a contract is first-best, then the transition of transfers between states of nature at any
period is given by (3). Then, the transfer at period # is by (hs, 1) = b7 if the state of nature is 1 for
any history h; and by (he,2) = b} if the state of nature is 2 for any history h;. m

Lemma 2 If there are only two states of nature, then the optimal contract §* for (4) monotonically

converges to a stationary contract §'.

TWith different risk-aversion coefficients, T obtain a system of polynomial equations of different degrees.



Proof. Let the optimal contract be 6*. By definition, the contract §* gives the appropriate transfer
for any state of nature at period 1. Suppose that transfers at period 1 are given by b% (hy,1) and
b (hy,2).

Without loss of generality, lets assume the state of nature at period 1 is 1. By (3), b7 (h1,1)
belongs to [b_l E] and, if the state of nature is the same at period ¢t and ¢ + 1, then transfers in
these periods must be the same (i.e. b} (hy,s) = b}, | (ht41,5)). Then, until the state of nature
becomes 2, the transfer stays b7 (hy,1).

Suppose that the state of nature stays 1 for period 1 to period ¢+ — 1 and becomes 2 at period
t. Then b} (hy,2) must be equal

o t0 by if by > by (b7 1 (hs—1.1),2);
o orto by (b7 (he1,1),2) if b (bf_y (he—1.1).2) € [ba, bo];
o or to by if by < Et (b;’{_l (ht—1,1) ,2).

In case 2, this means that the contract is first-best and by Lemma 1, the contract is stable.
Suppose case 1, i.e. the transfer in state 2 is the lowest possible (bz). If T stay in state 2, then
the transfer stays by. If I return to state 1 at period 7 > ¢, then b% (h,, 1) must be equal:

. tob_lifb_1>gr(b_2,1);
e orto b, (big 1) if b, (big 1) € [hg]
. ortoaifa<gr(b_2,l).

In case 2, this means the contract become stable after period = with ET (big 1) in state 1 and
ba.

In case 3, this means the contract become stable after period T with b; in state 1 and by

Case 1 is impossible. T have supposed that by > by (bi_; (hs—1,1).2). Then, b; (b, 1) >
bi_y (he—1.1) > b1.

By the structure of the process, the probability that the history h, contains state 1 and state
2 while T goes to infinity is equal to one. =

These results hold for any concave utility function. This comes from the fact that transfers in
cach state must belong to a closed interval. Consequently, if the first best contract transition given
by b (b7 (hs—1, ), 2) belongs to the interval, then there is a first-best self-enforcing contract. By
definition, any first-best contract is stationary since transfers do not depend on the history but only
on the actual state of nature. For any no first-best self-enforcing contract, boundaries constrain the
valuc of transfers. In the two state case, the non-trivial self-enforcing contract (NTSEC) converges
monotonically to a stationary contract where the transfer is upper bounded in state 1 or lower
bounded in state 2.

In the case where the number of states of nature is higher than 2, the NTSEC does not
converge to a stationary contract. The reason is transfers in intermediate states of nature (state
2,3,...,8 —1), it could be optimal to have history-dependent transfers. For example, in the 3-state
case, transfer in state 2 could take different values depending of the history. But, if T define partial
history-dependent stationarity, which says that transfers in any state depend only of the part of



the history in which state 1 and S was realized, I can obtain a lemma similar to Lemma 2 using
partial history-dependent stationarity for any number of states of nature.

Now, I am able to study the existence of a NTSEC. To prove the existence of such contract, I
can only look for the existence of a stationary contract which satisfies the self-enforcing constraints.
By Lemma 2, if there is a NTSEC §*, then this contract converges monotonically to a stationary
contract ¢’. The contract 6" which must be self-enforcing since a self-enforcing contract must be
self-enforcing in any state of nature and at any period. Consequently, looking for the existence of

a stationary self-enforcing contract is enough to prove the existence of a NTSEC.

Proposition 1 Let p be the probability of being in the state of nature 1 and yy > y;. If er(v2—v1) >

1+ Wlﬁ—p)} , then there are some values of V' for which the solution to (4) is not the TSEC.

Proof. By Lemma 2, each optimal contract 6* converges to a stable contract §’. Then, if 6" is not
self-enforcing, ncither is 6*.

Take ¢’ and assume that this contract gives at any period b} if the state of nature is 1 and b}
otherwise. Let U’ and V' be the gain in utility of agent 1 and 2 respectively with the contract ¢&'.
Suppose that §' is self-enforcing. Then,

—eTTWimh) Lot L BEUY] > 0
eTTW2mb) LTz L BB (U] > 0
e ) 4 e L BB V] > 0
e T@H) L oY L BE V] > 0

I have supposed that yo > y;. This means that agent 1 is relatively more rich in state 2 than
in state 1. Then, the optimal transfer must be negative in state 1 and positive in state 2.
If T take a look at the participation constraints, T see that only two constraints are really

constraining.

—erlyz2=bh) 4 o=Ty2 | B U] > o
_e—r(ﬁ+b'1) + e—rﬁ +BES [V/] > 0

The other two are not because in those cases, the agent receives some amount. Then, they do
not want to break the contract. By definition, U’ and V' are stable. T can compute their value by

using the Bellman equation.

U = p( e~y —b) + e‘Wl) +(1—p) ( e~ T(y2—b3) + e—?“y2> + BU’
U = ﬁ [p <_e*7’(y1*b'1) + 6—@1) +(1—p) (_e*T(ysz'z) + e—ryzﬂ
and
Vo= [p (76’“"1 + 1) +(1-p) (fe”bé + 1)} + 8V’
# e bl s ()



T replace U’ and V” in the preceding constraints. Now, I must isolate d} in the first constraint.

—er(y2=by) —TY2 L _e—rly—by) —ry1 _ _e Tl =by) 4 Ty >
gy o ) g (e )]
Pr < —rly1=b1) 4 o= y1> 1-6p ( r(y2—b3) | ,— yz)
L A 7" ,— T r >
-5 e Vte -3 e 2) > 0
/BP <_e*7’(y1—b'1) + e‘“ﬂ) + (]_ — ﬂp) ( —r(y2—b3) + e—?"y2> > 0
ﬂp( r(y2—y1) Tb1 +€T(y2 yl)) + (1 ,ﬂp ( sz + 1) > 0

And T obtain :

Bp
1-fp

7

(_er(yg—yl)e?"b,l + er(yz—yl)) +1 > ez

Graphically, this condition is represented by Figure 1.

erb; k

(Bp)e"(¥2—¥1)
1-Bp +1

45¢

(ﬂp)e:(yz y1) +1 erbl

Figure 1: First Constraint

I can proceed in the same way with the second constraint.

_e—rb’1+1+/8|:$<_erb’l+l) (1—2 ( 41;2_’_1) > 0
sl () R )] 2 -
_rbu_g{ <7 _rb/) ( _Tb') > _ﬁ

(1—,8+5p( )+6 5p( 2) > 1



And T obtain :

1-B+Bp <_€7rb’1> 41 > e
B—Bp B —Bp
6 - ﬁp = S erb'2
1—(1=B+8p) (™)
Now, I can graph this condition (See Figure 2)
erb'2 /

N

N\ \
O

\

45¢

1 /
1-B+8p 1 e

Figure 2: Second constraint

T know that the frontier must have the point (1, 1) since the TSEC is self-enforcing. If T combine

the two constraints, I obtain Figure 3.

erb; /

45¢

1 erb'l
Figure 3: Both Constraints

The grey and hatched region is the set of all contracts like §’. To know if there exists such

contracts, T must analyze the slope of the two constraints at the point (1,1). Lets begin with the

10



first constraint.

d(erblz) ﬂpe’”(yQ—yl)

dey T 1 pp

For the second one, I obtain:

d(e™?) d ( B—Bp )
@) T ae \I-1- 8+ B

d(erbé) B—Bp —rb]

~ = - 1-— e ™1

d(erbl) [1 (1 B+ Bp) e*Tbi]Q ( B+ Bp)

If T evaluate this slope at (1,1), I obtain

de™) _ _(L-B+5p)

d(ert) 8- Bp

In order for self-enforcing contracts other than the TSEC to exist, the slope of the second

constraint must be larger than the slope of the first constraint.

(L-=B+Bp) _ _Bperte—w)

B—Bp - 1-3p
(1 - Bp) (1 -8+ 5P) < PT'(:‘JZ—yl)
Bp (B — Bp) -
_1-5 r(y2—y1)
bt Bp (B —Bp) = e

Then, the slope of the first constraint is lower than the slope of the second if er(¥2-v1) >
1-p
It G o ™
For the moment, T do not know if the optimal contract is first-best. Proposition 1 tells us only
under which conditions a non-trivial solution to (4) exists. Proposition 2 gives the condition to

have a self-enforcing first-best contract.

Proposition 2 Let p be the probability of being in the state of nature 1 and ya > y1. If er@2—v1) >

2 _
1+ Wlﬁ—p)} , then there is some value of V' such that the optimal contract is first-best.

Proof. Suppose that the optimal first-best contract is b{b, bgb and let U7? and V£? be the gain
in utility for agent 1 and 2 with the contract §/°. The first-best contract is self-enforcing if it fulfills
the self-enforcing constraints. In the proof of Proposition (1), I state that only two self-enforcing

constraints are relevant.

w6—7"(1/2—b§b) +e "2 4+ BE, [Ufb]
—emT @) e~ 4 g [V F]

v
o

v
)

By (5), I know that the first-best contract is given by the following rclation:

b b
e’ — B (va—y1) orb]

11



Let A be the NTSEC that fulfills both self-enforcing constraints with equality. Then, some
first-best contracts are self-enforcing if A is on the left side of the first-best contract line. To
proceed, I must find the solutions to the equations for the constraints. Since the TSEC satisfies
the constraints, I must focus on the other solution (point A). Let (bf',b4) be the values of the
transfers at point A and let U4 and V4 be the gain in utility of agent 1 and 2 with the contract

54, Then, point A represents the non-trivial solution of

_e*T(@b*b?) +e7 ™2 4 3F, [UA]
_ei,,,(qubf) + e + BES [VA]

In the previous proof, I have found that those equations can be written as:

ﬂ ( CT(y2*y1)CT’bf‘ + CT(yZ*yl)) 41 = e"'b'f
1-8p
6 - Bp rb

—(1-B+8p) ()  °©

By solving this system of equations, I find that the non-trivial solution is :

wp o (BTN o _
= () 60+ 6 o)
A 1- 1-—
e’ by = 1+ ﬂ—per(yzﬁ—pyl) - (/8 - 59) - <Bper(y26—py1)> (/8 - ﬂp)

I8 A
If T calculate the slope of the line which connects point A to the origin, £ ! , I find:

erbé
et L gkt (B Be) (it ) (8 o)
rbd er(y2—y1)
et (8e52222) (6~ ) + (8 -~ Bo)
r{yz2—y1) m(y2—y1)
1-8p g 1= P (B Bp) — (B Bp)
r(y2— er(yz—y1)
Bpertvamw) (Bt 2) (8= o) + (8 — )
r(yz—wu1)
_ 1 _ ,Bp Bpel_ﬂp + 1 .

Ppertunod \ (B2 (5 — 5p) + (5 - Bp)

1-38p < I 1)
Bperwa—v1) \ B — Bp

Now, I must compare this result with the slope of the line of first-best contracts. If the slope

of the first-best contract line is lower than the slope I find above, then some first-best contracts

12



are self-enforcing.

b A
orb! T

v

b A
erbg 67‘52

v

1 1-75p 1
r — 1
es(y2—y1) ﬂper(yz—yﬂ 8 —/Bp

he—y) » LB (1—5+5P>
- Bp B—Bp
- Bp (B — Bp)
r 1 - /B
ezlvz—y1) > IR S
Bp (B = Bp)
2 _
Then, if er(v2—v1) > 11 4 BP(B 5{))} , there exist some values of V' such that the optimal contract

is first-best. m

The idea of the proof is the following: the first-best relation given by (5) must be compared
with the non—trivial contract solving the two self-enforcing constraints. Precisely, T must compare
ratios —f; and £ ﬂ— where b/ is the transfer in state s under a first best contract ® and b2 is
the transfer in state s when the contract is the non-trivial one solving self-enforcing constraints.

Figure 4 illustrates the idea.

b b
erbg —e g}y2 —Y1 ) erb{

NN
-

N

45°

Figure 4: First-Best Contracts and Constraints

From the two preceding propositions, if y> — y; increases, then the optirnal contract will be-
-trivi r(y2—y1) i} r(yz2—y1) > }

come non-trivial once e™¥27¥1) > |1 4 B B~Fp) and when e"\¥27¥1 1+ i (/3 5 1K then the

optimal contract will become first best. Those results can be viewed as the dual solution from

Proposition 4 of Thomas and Worrall [19] which says that there is a discount factor 8* such that,

for all § > (*, some optimal contracts are first-best and there is a 8, < 3* such that for all

fb

rb

8Mathematically, I find that the ratio & b}b is constant for any first-best contract.
e’72
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B € [B«, 8%), the optimal contract is non-trivial but not first-hest.’

T prove Proposition 2 by finding the condition such that a first-best contract satisfies all self-
enforcing constraints. But, what can I say about the optimal contract? Kocherlakota [12] proves
that, when some optimal contracts are [irst-best, then the expected utility converges to a utility
level given by a self-enforcing first-best contract.'® I can rewrite this proposition in a equivalent

way in term of contracts

Proposition 3 Suppose that some first-best contract is optimal. Then, all optimal contracts con-

verge to a first-best contract.

Proof. See Proposition 4.1 of Kocherlakota. =
T say that a contract ¢ is first-best convergent if it converges to a first-best contract. This

definition will be very useful in Section 5.

3.2 Pareto Frontier

In the previous section, I derive the condition to have a NTSEC. Here, I want to show how the
self-enforcing constraints affect the optimality of the contract. To do so, I use the Pareto frontier
in either case where a first-best contract is or is not self-enforcing and I compare with the Pareto
frontier when there is no self-enforcing constraint. T first begin with the Pareto frontier when there

is no self-enforcing constraint.

Proposition 4 Without self-enforcing constraints, the Pareto frontier is given by:

1-p 1—(1-B)e™V

E, e~ 5Us 2

Proof. First, with the assumption of constant revenues for agent 2. I can rewrite the participation
constraint. By Proposition 4.1 of Kocherlakota [12], T have that V (6, hs) = V. Then,

Uv (V) = 1[E5 erve] B, [e75%]

with V €

By [-e @t oo 1 gV > T

E; {fe*"”f" + 1} > (1-p)e™V
E, [e‘rbgb} = 1-(1-B8)e™V

I know from (5) that the relation between transfers is given by:

1
bl = i + 52 =)

9Tt is possible to write conditions to have a NTSEC or a first-best self-enforcing contract with beta on the left
side but conditions become a bit messy
108ee Proposition 4.1 of Kocherlakota [12].

14



By introducing this result into the participation constraint for agent 2, I obtain:

p (67”’{1)) +(1-p) <e’“’§b) = 1-(1-8)"V
p (e—rb{b> +(1-p) (e—r(b{”+%<yz—y1))> (-8 eV
1 - (1- )™V
p+(1—-p) (@g(yl—yz))

fb
e—rbl

And e~ is given by:

omrbdt _ 1—-(1-p8)e™V

P (eT ) + (1= )

Then, T am able to define the Pareto frontier explicitly by introducing b{ b and bgb in the utility

function of agent 1.

uft = E, {—e”(’u‘s*bﬁb)+e—’“ys+ﬂUf”}
1
U = g (B e - (1 gy
_ry,.12
Uuft — L E, [e"”ys] _ Es [e =Y ]__
1-5 1-(1-p8)e™V

The maximum value for V is reached when Uf? = 0.

A
1—(1-8)e™Vyax

E, [e_’"ys] =

v = 1 1 B, [e~5v]"
MAX = 1= B)e™ \ " E,[e¥]

Figure b represents the unconstrained Pareto frontier when there are no self-enforcing con-
straints.

Without self-enforcing constraints, this Pareto frontier is attainable everywhere. This is not the
case when I add self-enforcing constraints. With self-enforcing constraints, as shown above, there
are two possibilities: either some first-best contracts are self-enforcing or no first-best contract is.
In the following proposition, I present the Pareto frontier if there is no self-enforcing first-best

contracts.

15



Figure 5: Unconstrained Pareto Frontier

2
Proposition 5 Suppose that {1 + ,le;ﬁ} > er(v2—v1) > {1 + m} and let

p%(1—p)
M= 1Bt PP g )
Bper(y2—y1)
r(y2—y1)
we [ Bpe )
et = (PEET ) (8 o)+ (8 B
(P22 ) 3= o)+ 3= 0
1—p) e~ A
VA — ( 1— by
1-3+6p ( € )
L—p)e ™ oA
yMAX ( 1— e Tb2
(1—6p)(1—ﬁ+ﬁp)( )
Then,
-ifVe [0 VA] then the optimal contract is given by:
b (he, s) = bi* if the state of nature s is 1.
(1 p) ; ; —
e b (hy,8) = AT if the history is hy = (2,2, ...,2).
e by (hy,s) = b’24 otherwzse
-ifVe [VA VMAX] then the optimal contract is given by:
b (he, s) = b4 if the state of nature s is 2.
o b (hs,s) = e(1=5+bp) if the history is hy = (1,1, ...,

p(1=5+p)+(1=p) (16772 ) = (1= pp) (1= +Bp)redsV
o by (ht,s) = bi* otherwise.

And

16



-ifVe [0, VA] , then the Pareto frontier is given by:

s (v) _ p (_e—r(y1—b1 ) + 6_7"91)
(1-8+8p)(1-pB)

NIV 1= p )
(1-8+8p) 1—p—e®x(1—F+4pp)*V
-ifVe [VA, VMAX] , then the Pareto frontier is given by:

pe” "V (1 _p(1 —5+ﬂp)>
1-Bp v

USE(V) =

where v = p (1= B+ Bp) + (1= p) (1= =8 ) = (1= pB) (1= B + Bp) + V.

Proof. By Proposition 1 and 2, T already know that there is no first-best self-enforcing contract.
By Lemma 2, the optimal contract converges monotonically to the contract given by the non-trivial

solution of the following 2 self-enforcing constraints:

Br (y2—y1) ,rb] (y2—y1) b,
T r r 1 = /r 5
1- 6p ( € et+e ) + e
B - ﬁp — Prb'Z
1—(1—=B+p8p)(e7m)
which is
o =B
et = 1-8+8p+ Bperwa—v1) (1-8+5p)
r(yz2—y1)
b4 ﬁpe )
et = () (5 pp)+ (BB
(B2 (5 o)+ 5 o)
Graphically,
JRACA s’ = e3(wa—v1)erty”
A
1
45°

1 e’"b,l
Figure 6: Stationary contract

Let V4 be the utility for agent 2 at point A. Then,
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VA=, <_efr(ﬁ+bf) +€—TE+ﬂVA> (1 p) <_efr(ﬁ+b‘24) +€_m+ﬂVA)
But, the stationary contract satisfies the relevant participation constraint with equality. Then:

_e @ty | @ +aVA=0

Then, T have:
VA — (1 _ p) <_e—7"(ﬁ+b2‘4) + 6—7‘@ +BVA>
e—rﬁ (1 _ p) (1 _ €_Tb§4>
VA =
1-8(1-p)

Then, if V' = V4, the optimal contract is the contract represented by point A. If V' # V4, then
the optimal contract is different than the contract represented by point A, but must monotonically
converge to the A-contract. In the proof of Lemma 2. I have seen that a contract can only differ
from a stable contract at the beginning and until the state of nature switches. In other words, the
transfer in state 1 at period  can be different from b{* if state 2 is not yet realized in the ¢ first
periods and the transfer in state 2 at period t can be different from b3' if state 1 is not yet realized
in the t first periods.

This results in two types of contracts:

Type 1: e The transfer at period ¢ is b{* if the state of nature is 1.

e The transfer at period t is b5 < b4 if the state of nature is 2 at period ¢
and the state of nature was not realized in the first ¢ — 1 periods.

e The transfer at period t is b3 if the state of nature is 2 at period # and the
state of nature was rcalized in the first £ — 1 periods.

The transfer at period ¢ is b4 if the state of nature is 2.

Type 2:

e The transfer at period t is b} > bft if the state of nature is 1 at period ¢
and the state of nature was not realized in the first £ — 1 periods.

e The transfer at period t is b{* if the state of nature is 1 at period ¢ and the
state of nature was realized in the first ¢ — 1 periods.

The type 1 contract gives more utility to agent 1 and less to agent 2 and the opposite is true
for type 2 contract. Then, when V < V4, the optimal contract is type 1 and when V' > V4, the
optimal contract is type 2.

Now, T must calculate the transfer in the first ¢ periods in term of V. Let’s begin with the case
where V < V4. Then,

V =p <7e—r(ﬁ+bf‘) + e—rﬁ +BVA> + (1 _ p) (_e—r(ﬁ-&-b;) + e—rﬁ +ﬁV)

But, I find ¢ by using the self-enforcing constraint :

_efr(Equf) + E—TE +,BVA -0

18



I obtain:

V. = (1-p) < e W) 4T 4 ﬂV)
V. = (1-p) (ﬁe*"(mb? + e*"”) +(1-p) 8V
1=(1=p)B)V = (1=p) (e 4 em)

(
(1 -(1- p)ﬁ) ST (1 B e—”bé)

(1-p)
And
—rb3 1-(1-p)B ,w
rby — _ rw
‘ ! (i-p) ° v
orhs (1-p)

1=p)—[L=(1=p)pler™V
If V=0, then b5 = 0. If V = V4, then:

erb; (1 B p)

__ e "¥(1—p) 1—e 7b3
(1-p) -1 (1= ezl ™)

b (1-p)
(1—p)—(L=p)(1—em%)

A
= p/rb2

erb§
Now, I examine the case where V > V4.
vV o= p (_efr(EerI) +e—rm+ﬂ7> +(1-p) (_efr(Eer‘;’) +€_TE+ﬂVA)
1-8p)V = p (_e—r(ﬁ—f—bf) I e—m) L (1=p) <_e—r(m+b§) " +5VA>
(1-Bp)e™V = p ( e b 1) +(1-p) <fe*”7é“ T+ ﬂcmVA)
Then:
(1= Bp)e™V —(1-p) (—e’”’? +1+ ﬂemvf‘) - 5 (—e*”’f" + 1)

1 X=6p) gy (L= p) (cet + 14 permya) = ot

p p
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Moreover, I have already found that V4 = A=) . Hence,
B B 1—p) _e—r(@Hby) 4 oW
—rb} (]' 6,0) rwYs (]' p) —rbd TE( (
e = 1——""V + —e "2 4+ 14 pe
p p 1-8(1-p)
_ _ 1-p) |
- 1=0) o =p) (L,
e = 1l-——e"V+ —e "™ 4+ 145
p p 1-8(1-p)
e—rbf!’ = 1— (]- - Bp) GTEV—F (]- - p) (1 _ efrb‘;)
p p(l—B+0p)
Prbi'b — p(1_6+610)

p(L=B+Bp)+(L—p)(1—e) = (1—-pB)(1—B+pp)xerd+V

Let VMAX he the maximal value for V. Then, VMAX ig reached when b} = 0. To have b} = 0,
I must have:

(1-8p) (1 —B+pp)e™VHMAX = (1) (1 _ e—rbg‘)
MAX  _ (1—p)e @ -
V= s )

The previous part of the proof gives the optimal contract relative to the value of V. Then, if T
replace those values in the utility function of agent 1, T obtain the Pareto frontier equation. Let’s
begin with the case where V € [0, VA]. In this case, the utility function of agent 1 is given by:

UOF (V) = p(—e 070D 4 o7 4 BUA) 4 (1= p) (e o7 4 BUOF (7))

With N N
U = p (e pemm 4 BUA) (1 - p) (e 4T 4 U

Because —e T(W2—b2) 4 g=ry2 BUA = 0 by the self-enforcing constrain, T obtain:

Ut = o, <_efr(y17bf) T +5UA)
Ut = ﬁ <_e—r<y1—bf> + e—ryl)
Then,
Uor (V) = ﬁ <_e*7’(yrbf) + e—mn)
+(1-p) (—e*TyZe"”ﬁ +e T2 4+ BUOF (V))
(1-B+B8p)UF (V) = ﬁ <,C—r<y1—bf> +e—ry1> L (1=p) (7641,26%; +e_ry2)
W) = s )
oo (e ™)
If T substitute "% = 1_p_em1(_1iﬁ+,3p)7= I obtain:
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ey —bt) —Ty1
_ pL—e 1 4e _ —7Ty2 -
uer(v) = ( ) 0pee <1—1 Lo p )
—p

(1=8+p8p)(1—ppB) - (1-8+pp) — e (1=8+Bp)V

UOP (V P <_e_r(y1_b{1) 6_%) (L—p)xe™ [ —e™x(1-B+Bp)*V
1—p—e?(1-5+8p)V

(1-=8+48p)(1—pp) (1-8+8p)

Now, for the case where V € [VA, yMAX ] In this case, the utility function for agent 1 is given
by:

UOF (V) = p (e @0 e 4 BUOF (V) 4+ (1= p) (o7 e 1 (V)

T already know that —e "(#2-%2) 4 c=7¥2 4 3[/A = (). Then,

UoF (V) = - —pﬂp (_efr(yl—bf) + e—ryl)
vor vy = £ e

<1_ P58+ 5p) )
pL=B+B0)+(1=p) (L=eT) = (1= pB) (1 =B+ Bp) ™V

Since the unconstrained Pareto frontier represents the maximum agent’s utilitics under all first-
best contracts, then the Pareto frontier when no first-best contract is self-enforcing is strictly lower.
Another important point to underline is the discontinuity of the Pareto frontier. Kocherlakota [12]
says that the Pareto frontier is differentiable everywhere. In fact, as corrected by Koeppl [13], the
Pareto frontier is not differentiable everywhere (Proposition 3.1). If I examine the Pareto frontier
where a non-trivial solution exists, I find that the Pareto frontier is continuous but not differentiable
everywhere!!. The problem of differentiability occurs at the intersection of 2 segments.

This problem of discontinuity occurs also when some first-best contracts are self-enforcing. The

next proposition shows the Pareto frontier in this case.

1 The continuity is quite obvious because cach segment is continuous and at intersection of two segments, the
contract is defined evenly on both segments.
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2
Proposition 6 Suppose that e"(v2—¥1) > {1 + sz*(lﬁ p)} and let

¢ = 1B Bp+ (B Bp)ervv)
e = B Bp+(1— B+ Bp)erwrmy)
vB _ (8= Bp) (1 — ezv1-v2))
orw (1 —(B-Bp) (1 — e%(yl—yz)))
¢ BpemutiogneT
Bpe=mvi + (1 — Bp) e Wity2)
if __ BpemrntGopne
Bpe Witve) 4 (1 — Bp)e o2
ve - P (1—e2m—v2)) (B(1—p)em2 — (1 — Bp) e2Wr+v2))

e (L= B) (Bperv> + (1 - Bp)er)

MAX _ (L—ple™ _ b
VI = e )

Then,

-ifVe [0 VB] the optimal contract is given by:

by (hs,8) = bP if the state of nature s is 1.
(1-p) . . N
o b (hy,s) = (1 BT if the history hy = (2,2,...,2).
e b, (hy,s) = bF otherwise.

[VB Vc] the optimal contract is given by:

e5vi—v2)
°@@t>—ﬁﬂ%ﬂﬁﬁmi

ez (v2—v1)
.bf(ht )_W

- if V e [VO,VMAX]  the optimal contract is given by:

o b, (hy,s) = b5 if the state of nature s is 2.

e b (hy,8) = p(1=f+Bp) if the history hy = (1,1, ...,

p(1=B+Bp)+(1=p) (1™ ) ~(1—pB)(1—+Bp)xem @V
o b (hy,s) = b otherwise.
And
-ifVe [0, VB], then the Pareto frontier is given by:
[yoF (v) _ (1—p)e <€rbf _ (1-p) __)

[y A=p)—[-(-p)pleV

(P <_e—r(y1—b1}3) 4 e—ﬂn) +(1-p) (_e—ryzerbf + g—?“w))
1-5

+
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-ifVe [VB, VC] , then the Pareto frontier is given by:

T 2
sb 1 —TyYs] _ ES [e—gys]
vro= 1-5 B[] 1—(1-pB)e™V

-ifVe [Vc, VMAX], then the Pareto frontier is given by:

USE (V) = ll’e__;/; (1 _pQ —f‘i‘ﬁp))

where y=p(1— B+ Bp)+ (1 p) (176‘”’20) ~(1=pB)A—-B+Bp) xe™ V.

2 —
Proof. Since er(¥2—v1) > {1 + Wlﬁ—p)} , then there exists some V’s such that the optimal

contract is first-best. Let’s find the set of those V's. o
The first step is defining the transfer in a first-best contract in terms of V.

Vo= p(e ™D 1T BY) 4 (1 p) (o0 e 4 7)
1-83)e™V = p (1 - e_rb{b> +(1—p) <1 — e‘rbgb)
1-(1-8)e™V = pe_rb{b +(1—p) e
By (5), e=hd" — e=rbl’ o= (v2—w) Consequently
L_ (1= 0™ = peml" 4 (1= p) el e=5m-m)
p+(L—pleztnimy) oo’
1-(1-B) eV
And
gofr _ perTv) 4 (1 p)
1-(1-B)e™V

Let V? be the minimal utility of agent 2 when the contract is first best and self-enforcing. This
contract is the first-best contract satisfying the self-enforcing constraint of agent 2. Let b2 and b2
be the transfers of the first-best contract for VB. Then. T find that

N = 1B+ B+ (8 Bp) ey
e = B Bp+ (L B+ Bp)ery)
(B - Bp) (1 — e%(yl—y'z))

vE =
e (1= (5~ Bp) (1 - exlv)))

Now, for the maximal V, denoted V¢, given an optimal first-best contract, I must use the
self-enforcing constraint of agent 1. Let b and b§ be the transfers of the first-best contract for
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V¢ which is given by

Bpe—ryﬁ(l—ﬁp)e’”’?

et =
Bpe~mv1 + (1 — Bp) ez (y1ty2)
o Bpe~ryi+(1=Bp)e 2
Bpe™ Witv2) 4 (1 — Bp)eTve
ve _ P (1—e30=1)) (B(1 - p)e~™¥2 — (1 — Bp) eb+v2))

e (1= ) (Bpervz + (1 = Bp)ers)

IfVe [VB ; VC], then the optimal contract is given by the first-best contract given by:

it _ et —p)ezvimv)
1-(1-p8)evV

bfe _ peRti) 4 (1 p)
1-(1-p8)evV

Now, I study the case when V < VB. Equivalent to the proof of Proposition 5, the optimal
contract in this case is given by:

¢ The transfer at period ¢ is b if the state of nature is 1.

e The transfer at period ¢ is b5 < b if the state of nature is 2 at period ¢ and the other possible
state of nature has not been realized at any moment during the first £ — 1 periods.

e The transfer at period ¢ is b2 if the state of nature is 2 at period ¢ and the other possible
state of nature was realized at some point during the first ¢ — 1 periods.

To find 3. T must solve

V =p (—-e‘r(EMlB) +e" 4 ﬂVB) + (L= p) (—e7m(@+b2) 4 o=r% 4 V)
But, I have found that b2 by using the self-enforcing constraint :

_p—r(@+bT) LeT L yB =
I obtain:

rby (1 _p)
(I=p)—[L=(1—p)ple™V

(A =

When V > V¢, the optimal contract in this case is given by:
e The transfer at period t is b5 if the state of nature is 2.

e The transfer at period t is b > b{ if the state of nature is 1 at period ¢ and the state of
nature has not been realized at any moment during the first ¢ — 1 periods.

e The transfer at period ¢ is b if the state of nature is 1 at period * and the state of nature
was realized at some point during the first ¢ — 1 periods.

To find b7, T must isolate it in:

V = (_e—r(m+b;) +€—rm+ﬁv> +(1-p) (_e—r(m+b,§) +€_TE+BVC>
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With some manipulations...

(1-8p)V = p (*e_r(mm + e_ﬁ) +(1=p) (*C_T(m“g’ LTy BVC>
(1-Bp)e™V = p (—e*”l’I + 1) +(1—p) (—e*”’g +1+ ﬂemvo)
1= 8p)e™V — (1= p) (—e ™ +14+87VA) = p(—e™ 41
P p p
1- ——  (1- _ .
1— (4610)67“1”‘/4- ( p) <76_Tb§‘ +1 _,’_ﬁeerA) _ e_rblb
P P
: . - (l—p)(—efr(m+b2c)+e*TW
By the self-enforcing constraint of agent 2, I have V¢ = e
1-— p) —e_r(ﬁ+b§4) + 6—7‘@
—rb} (]. - BP) rwy; (]- - p) _ € TU( (
e’ = 1o eV + —e 7 + 14 e
g p 1-B(1-p)
1-p) |
—rbi® (]' — 6,0) rwys (]' — p) —rb§ ( p ( )
e = 1-— eV +—F | -2 +140
p P 1-5(1-p)
—rb3? (]‘ — 6,0) rwYs (]- - p) —rbS
[ 1 = 1 — - e V N S A 1 _e S
P p(1—5+8p) ( )
e’"bib = p(l -8+ BP)

p(L=B+6p)+(1—p) (1) — (1—pB)(1— B+ p) xerd* V

Let VMAX be the maximal value for V. Then, VMAX is reached when b} = 0. To have b} = 0,
I must have:

(1—Bp) (1= B+ Bp)e™VMAX  — (1) (1 _ e—rb§>
MAX (1—p)e ™ g
! B u—ﬁmu—ﬁ+5m(1 )

I have already found that the Pareto frontier is composed of three parts. Let’s begin with the
second one, when the optimal contract is first-best. By Proposition 4, I know that the Pareto
frontier is given by:

1
1-5

E, [em5v:]

Ufe — —
1-(1-p8)evV

ES I:e_"’ys] —

Then, when V € [VB, VC], the Pareto frontier is given by this relation.
For the first case, i.e. when V' € [O,VB], T can use the same approach from the preceding
proof.

UOP (7) =p <7e—r(y1—b{3) L0 _,’_BUB> + (1 _ p) <76_Ty2€rb; 42 +,8UOP (V))
With

UP =p( et p e 4 gUP) (1= p) (e e e 4 BUP)
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If T compute UCF — U®, 1 find that

[joF (V) - UB = (1-p) (_enyz (erbg _ erb§*> +8 (UOP _ UB) (V))
OP (7/\ _ 7B _ (1 — p) e’ rb2 bl

UOF (V) -UB = T, (c P e )
Then,

orp . (L—p)eT™  oap

vt (V) = S, (e — )
(p <—6_T<y1_b13) + e_ry1> + (]_ _ p) <_€—T'y267‘b23 + e_ry2>>
+
1-p

And if T replace e™z by (17p)7[1(71(_1p7)p)ﬁ]e7@7’ I find that:

Py~ A=pem™ (e (L-p)
vt = s, <b <1—p)—[1—<1—p)ﬂ]eﬂ7>

R e R ] ).
1-5

Now, for the case where V € [VC, VMAX]. In this case, the utility function of agent 1 is given
by:

+

UOF (V) = p (e e 4 QUOF (7)) 4 (1 p) (oD e 7 (V)

T already know that —e~Tw2=b5) 4 g=mv2 4 BUC = (). Then,

[7oF (7) — : _pﬂp <,e—7"(y1—bf) + e—Ty1>
= 14 —ryy
Uor (V) = 1_6[)6 ¥

<1_ p(1—8+5p) )
p (L=t 6p)+ (1= p) (L) — (1= pB) (1= 5+ 5p) eV

Of course, the Pareto frontier in each case is dominated by the Pareto frontier in the case
without self-enforcing constraints.'? Figures 7 and 8 illustrate this fact.

At the opposite of the case where no first-best contracts are self-enforcing, a part of the un-
constrained Pareto frontier may be reached when some first-best contracts are self-enforcing. This
comes from the fact that, if a first-best contract is self-enforcing, then self-enforcing constraints do
not apply and the problem is similar to the one without self-enforcing constraints.

If T take a look at Figure 8, T see that the Pareto frontier reaches the unconstrained Pareto
frontier at the middle. At the extremities, self-enforcing constraints apply and no first-best con-
tracts are possible. The gain to respect the contract is not high enough to compensate agents to

accept a net transfer to the other. In extremities, a NTSEC exists but it cannot be first-best.

12The Pareto frontier in case where some first-best contracts are self-enforcing is weakly dominated while the
Pareto frontier in the other case is dominated everywhere.
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Figure 7: Pareto Frontier with no self-enforcing first-best contracts
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Figure 8: Pareto Frontier with self-enforcing first-best contracts

4 Variance

Thomas and Worrall [19] show that there exist 2 thresholds 8, and 8* with 0 < B. < 8* < 1
such that for any 8 € [0, 3.] the optimal contract is the TSEC; for any 8 € (84, 3*) the optimal
contract is NTSEC but this contract is not first-best; and for 8 € [5*, 1) some first-best contracts
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are self-enforcing. I now examine the effect of the variance on these thresholds.
To do so, I constrain our analysis to the case where agent 2 is risk-neutral. In this case, the

problem can be written as

MAX U (8,hy) (6)
subject to
u(ys — by (hr,8)) —u(ys)+ 8U (8, hry1) > 0O T=1,2,... VseS, Vh,
br (hr,s)+ BV (6,hry1) > 0 1=1.2,... VseS5, Vh,

Let F(F}) be the set of all distribution functions for which the number of states of nature is equal
to the number of states of nature of F; and the revenue in state s is given by (ys)1 + v ((ys)1 — ¥)
for v = Es[(ys)1] and for all v > 0. Note that for all distributions of revenue Fy € F(F), the
expected revenue is equal to the expected revenue of Fy, in other words Eg[(ys)2] = Esl[(vs)1]-

Distribution F5 is a mean-preserving spread of distribution Fj.

Proposition 7 Suppose I have two distributions of revenue, Fy and Fy € F(Fy). Let g, be the
expected value of the revenue under Fy. Let (8.)1 and 8] be respectively the threshold to have
a NTSEC and the threshold to have a first-best self-enforcing contract with the distribution of
revenues Fy and let (8.)2 and 35 be the thresholds with Fy. Then

0,) (6*)1 > (6*)2;
b) By > B3
Proof. a): Let 8 > (8,)1 and &; be the optimal contract. Then T have for t=1,2,...,Vs € S

and Vht,

w ((ys)r = by (hes8)) — u((ys)r) + BEL

> BT ] = br (hyos)) - U(yf)]] > 0

T=t

By strict concavity of u, then

u (<y3>2 o b% (ht: 8)) — U ((ys)2) + ﬂEﬁ

S5 [u (u5 — B (hus)) —u(y3 ﬂ] >0

T=t

Let 62 be the contract such that b2 (hy,s) = bt (hy,s) + € with € > 0. By continuity, I know
there exists an e such that

w ((ys)2 = b7 (he. s)) — w((ys)2) + BU (6%, heyr) >
b7 (hy.s) + BV (6%, hyya) >

Then, I can find a NTSEC for every 8 > (8.)1. Since u and v are strictly increasing, then
(ﬁ*)l > (6*)2
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b) Now, let d; be the optimal first-best contract when the distribution of revenue is Fy and
B = B;. Since 4, is first-best, then transfers are independent of the history. Let bl be the transfer
in state s. By definition, if 4; is a first-best contract, the ratios of marginal utilities for agent 1
and agent 2 for each state must be equal.

W ((y1)2 —b1) ' ((y2)2 — bb) w ((ys)2 — bs)

o (Wb o (W bY) T (W bY)

If agent 2 is risk-neutral, then the first-best contract leaves agent 1 with a constant stream of

net revenue,
(ys)l - bi = (ya)l - b}, Vs,o0 € S (7)

Let b; be the expected value of the transfers under the distribution Fy. Consider the contract
6% where b2 = (1 + v)bl.

If T examine agent 2’s self-enforcing constraints with the contract 6%, T have that Vs € S,

S

T=t

b2+ BE:

If T replace b2 with their values, T find

o]

D BT+ )bl

T=t
i BT_tbi‘| )

(1+7) <b.£ + BE!
T=t

(1+ )by + BE!

Since 04 is self-enforcing, then .

(1+7) <b§ + BE!

T=t

If T examine agent 1’s self-enforcing constraints under the distribution Fs, I have that Vs € S,

u ((ys)Q - bi) —u ((ys)2) + ﬂE‘ﬁ

iﬂ” [u(ys —b2) —u (yé)]]

T=t

If T replace (y5)2 and b2 by their values, T find

u((ys)1+ 7 ((ys)1 —y) — L+ — u((ye)r + 7 (s)1 — )

o0

+BEL D B u (bf v (0 —y) — A+ b)) —u (] +7 (7 —v)]

T=t
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w((1+7)((ys)r — bL) —vy) — u((L+7)(ys)1 —vy)

o]

+BEL D 87 [u (L+ 7T = bY) — vy) — w((L+7)uf — 7))

T=t

Because the self-enforcing constraints for agent 1 matter only when transfers are positive, which
is the case when revenues are high, I concentrate my attention on those cases. Since (14+)({ys)1—
bg) — vy < (ys)1 — by when (ys)1 < y and (1 +7)((ys)1 — b)) — v9 > (ys)1 — by when (ys)1 >y,
then, by the strictly concavity of u and since §7 is self-enforcing. T have that

w ((1+7)((ys)r — b5) —vy) — u((L+7)(ys)1 — v¥)

o]

+BEL D B [u (L+ )T = b2) = vy) —u((L+)yl — )] | >0

T=t

By the same argument I use in a), there exists a € > 0 such that the contract &, with b = b2+,
which is first-best. respects the self-enforcing constraint with strict inequality. m

When the variance increases, the gain for agent 1 to sign a contract increases since agent 1 is
risk-averse. Then, the incentive is bigger for agent 1 to sign a contract. Without the assumption
about the type of change in agent 1’s revenue, an increase in the variance does not necessarily
result in a lower threshold.'? Tt could be that the increase in the tails are so large that they cannot
be compensated by other states of nature. Take the following example: Suppose that there are
two revenue distributions Fy; and Fp. Let p; be the probability to get y under the distribution
function F;. Suppose Fy is characterized by pt = pl, = 0.5. Suppose also that pZ = p%, = 0.495,
pz = 0.009925 and p?,,, = 0.000075. It is easy show that the expected revenue is the same under
Fy and F; but the variance under F3 is higher. The gain to break the contract when the revenue is
1000 could be positive for any possible contract and then, it is possible that, for a given discount
factor 3, there is a NTSEC for F; but not for Fj.

5 Merger

The question of mergers in the context of self-enforcing constraints is interesting. It has often
been argued that conglomerates serve the purpose of providing insurance to shareholders. With
the sophistication of financial markets, many have raised doubts about the ability of mergers
for providing insurance beyond that which sharcholders can get by themselves. This is certainly
true in the presence of perlect financial markets. When these markets are imperlect, however,
conglomerates may play a role. A merger could potentially provide better insurance than imperfect
financial markets. T examine this logic when financial imperfections are caused by commitment
problems, meaning that financial contracts must be self-enforcing.

In the previous section, I show that an increase in the variance decreases the threshold beyond
which it is possible to sign a NTSEC. Proposition 7 gives the possibility to discuss mergers of

firms with perfectly corrclated revenues. If two firms have perfectly corrclated revenues, then the

131t is possible to get this kind of result for the case where agent 2 has a random revenue but the condition over
the increase in the variance does not stay the same. To obtain a result in the case of random revenue for hoth
agents, I must define some conditions on revenues of both agents.
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merged firm will have the same number of states of nature. By Proposition 7, if firm revenues are
negatively correlated, then the merger decreases the variance and thresholds increase. But, since
the merged firm has smoother post-merger revenue, the final effect is quite difficult to predict.
In the case of perflect positive correlation, the merger increases the range of 4’s for which there
exists a NTSEC. On the other hand, the variance of the revenues increases at the same time.
Consequently, the ultimate impact of the merger on agent 1° utility is difficult to see. To get an
idca about the possible outcomes, T use a numerical example.

I use a CARA function to model a risk-averse agent’s utility and I suppose there are two
symmetric risk-averse firms with random revenues. They have the possibility of signing a self-
enforcing contract with a risk-neutral agent (the market). There are two states of nature with
equal probability (3). In the bad state, firms get $1 cach and they get $3 in the good state.
Let the rigsk-aversion coefficient for both firms r equal to 1. Firm 1 has to choose between two
possibilities: either stand alone to get financing, or to merge with another firm and then get

financing.

5.1 Stand-alone case

Both firms are symmetric and thus T study the stand alone problem for one firm, say firm 1. Let
1 and x4 be firm 1’s revenue in states 1 and 2 respectively and b, and b the transfers. I assume
that there are many risk-neutral agents. Consequently, the reservation value for them is 0 and I

can write the stand-alone problem as follows:

MAX E!|—e m@=bilhue) L o=r%s 1 577 (§, hy) (8)
subject to
El[by (hy,s)+ BV (8,hs)] > 0O
__e—r(xs—bT(hT,s)) + e~ TEs —i—ﬂE‘:[U ((5 h-r+]_)] > 0 T=1,2 S = 12 V’LT

by (hy,s)+ BEI[V (6,hri1)] > 0  71=12,.. s=1,2 Vh,

Let Us 4 be the expected utility for firm 1 in the stand-alone situation. I define the per period
certainty equivalent (CEg4) as the amount of money for which firm 1 is indifferent between this
amount and its net revenue with the self-enforcing contract. In other words, the certainty equivalent

in the stand-alone case is such that
_e_TCESA — (1 _ ﬁ) USA

Table 1 gives Ugs 4 for different values of 8. The thresholds to have a NTSEC and to have a
self-enforcing first-best contract are approximately 8, = 0.52 and * = 0.76 respectively.
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Table 1: Utility of firm 1 in the stand-alone case

B Usa CEsy B Usa CEsy
0.20 -0.261042 1.5662 0.60 -0.460352 1.6921
0.22 -0.267735 1.5662 0.62 -0.466551 1.7300
0.24 -0.274781 1.5662 0.64 -0.475109 1.7659
0.26 -0.282207 1.5662 0.66 -0.486559 1.7992
0.28 -0.290046 1.5662 0.68 -0.501567 1.8295
0.30 -0.298333 1.5662 0.70 -0.520951 1.8561
0.32 -0.307108 1.5662 0.72 -0.545875 1.8783
0.34 -0.316414 1.5662 0.74 -0.577699 1.8958
0.36 -0.326302 1.5662 0.76 || -0.618338 | 1.9078
0.38 -0.336828 1.5662 0.78 -0.669118 1.9159
0.40 -0.348055 1.5662 0.80 -0.730235 1.9238
0.42 -0.360057 1.5662 0.82 -0.805026 1.9317
0.44 -0.372917 1.5662 0.84 -0.898617 1.9395
0.46 -0.386728 1.5662 0.86 -1.019065 1.9472
0.48 -0.401602 1.5662 0.88 -1.179796 1.9549
0.50 -0.417667 1.5662 0.90 -1.404976 1.9626
0.52 || -0.435069 | 1.5662 0.92 -1.742939 1.9702
0.54 -0.451988 1.5706 0.94 -2.306465 1.9777
0.56 -0.453389 1.6120 0.96 -3.433892 1.9852
0.58 -0.456081 1.6526 0.98 -6.816911 1.9926

Figure 9 graphs the certainty equivalent as a function of 5. Note that there are two breakpoints.
The first breakpoint is when [ reaches 0.52. For all 8 lower than or equal to 0.52, there is no
NTSEC. Agent 1 is unable to sign a contract which is non-trivial. Consequently, the per period
utility remains unchanged while S increases but the certainty equivalent for the stand-alone case
does not change with the value of 3.1 For greater values, some non-trivial contracts become
self-enforcing, so the value for the certainty equivalent increases. The other breakpoint arrives at

£ = 0.76. At this point, the optimal self-enforcing contract converges to a first-best contract.

140/ 4 changes since it’s the weighted sum of present and future gains in utility.
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Figure 9: Certainty Equivalent

5.2 Merger case

The second possibility for firm 1 is to buy firm 2 by paying CEs4 in each period, and signing a
self-enforcing contract considering that it gets the aggregate revenue. Since I have two states of

nature for each firm, the merged firm will face four states of nature.

Table 2: States of nature

state 1 | state 2 | state 3 | state 4

firm 1 revenue 1 3 1 3

firm 2 revenue 1 1 3 3

To study the effect of correlation between firm revenues on the profitability of the merger, I

need to define the coeflicient of correlation p which is given by

_ COV(X.Y)

OX0y

where ox and oy are the standard error of revenues for firm 1 and firm 2 respectively.

Table 3 gives the probability of each state of nature for different coeflicients of correlation.
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Table 3: Coeflicient of correlation and states of nature

p state 1 | state 2 | state 3 | state 4
-1 0 0.5 0.5 0
-0.8 0.05 0.45 0.45 0.05
-0.5 || 0.125 0.375 0.375 0.125

-0.2 0.2 0.3 0.3 0.2
0 0.25 0.25 0.25 0.25
0.2 0.3 0.2 0.2 0.3

0.5 0.375 0.125 0.125 0.375
0.8 0.45 0.05 0.05 0.45
1 0.5 0 0 0.5

Since there are two states of nature for each firm and they have symmetric payofls, the merged
firm faces three different states of nature. Let 27 = 2, 2o = 4 and z3 = 6 be the revenues in each
state. Using this approach allows for a simple model in which T can analyze the effect of correlation
between firm revenues.

Let b; (hs,s)) be the transfer for period # in state s.1® T suppose that the per period cost of
acquiring firm 2 is its certainty equivalent (C'Es4). Then, the problem of the merged firm!6 is

MAX E} — e (za=bi(h1,8))=CEsa) 4 o—7(2s=CEsa) 4 g7 (8, h2) (9)
subject to
B [by(h.s)+8V (6.h2)] > V
and T =1,2,...,s =1,2,3 and Yh,,

— e (esbr (e ) =CBs4) | o=(2s=CEsa) 4 BETIU (6, hyi1)] >
by (hr.8)) + BEIV (8,hr41)] > 0

Vv
o

The expected utility of the merged firm is given by Ua,.

Table 4: Net gain of utility from the merger (positive value in bold)

| 8 p=—1]p=-08]p=—05]p=-02] p=0 [ p=02]p=05]p=08] p=1 |

Continued on next page

15Because there are more than 2 states of nature, the stationary contract is dependent on the history.

16With CARA utility functions, the payment of CEg 4 docs not affect the resolution of the problem. It is possible
to isolate e"©F54 in the objective function and in the firm self-enforcing constraints. Then, e"CEsa affects only
the utility but not the optimal contract itself.
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Continued from previous page
| 8 [[p=-1]p=-08]p=-05]p=-02] p=0 [p=02]|p=05]p=08] p=1 |
020 | 0.151 | 0.121 0.076 0.030 0 20.030 | -0.076 | -0.121 | -0.151
022 || 0.155 | 0.124 0.078 0.031 20.031 | -0.078 | -0.124 | -0.155
024 || 0.159 | 0.128 0.080 0.032 20.032 | -0.080 | -0.128 | -0.158
026 | 0.164 | 0.131 0.082 0.033 20.033 | -0.082 | -0.125 | -0.143
0.28 | 0.168 | 0.135 0.084 0.034 20.034 | -0.084 | -0.111 | -0.127
0.30 | 0.173 | 0.138 0.087 0.035 20.035 | -0.073 | -0.097 | -0.110
032 || 0.178 | 0.143 0.089 0.036 20.034 | -0.060 | -0.081 | -0.093
034 || 0.184 | 0.147 0.092 0.037 0 20.023 | -0.046 | -0.065 | -0.076
0.36 || 0.189 | 0.151 0.095 0.038 | 0.006 | -0.012 | -0.032 | -0.048 | -0.058
0.38 | 0.195 | 0.156 0.098 0.039 | 0.016 | 0.001 | -0.017 | -0.031 | -0.039
040 || 0.202 | 0.162 0.101 0.045 | 0.027 | 0.014 | -0.001 | -0.014 | -0.021
042 || 0.209 | 0.167 0.104 0.055 | 0.040 | 0.029 | 0.015 | 0.005 | -0.002
044 || 0.216 | 0.173 0.108 0.066 | 0.053 | 0.044 | 0.032 | 0.023 | 0.018
046 | 0.224 | 0.180 0.112 0.079 | 0.067 | 0.059 | 0.049 | 0.038 | 0.037
048 || 0.233 | 0.186 0.117 0.092 | 0.083 | 0.076 | 0.068 | 0.055 | 0.056
050 || 0.242 | 0.194 0.127 0.107 | 0.099 | 0.093 | 0.078 | 0.072 | 0.075
052 || 0.252 | 0.202 0.139 0.122 | 0.116 | 0.111 | 0.092 | 0.088 | 0.094
054 || 0.261 | 0.208 0.149 0.136 | 0.131 | 0.116 | 0.102 | 0.101 | 0.109
056 || 0.245 | 0.187 0.132 0.121 | 0.117 | 0.094 | 0.080 | 0.082 | 0.093
058 || 0.228 | 0.166 0.115 0.106 | 0.087 | 0.070 | 0.057 | 0.061 | 0.075
060 || 0.212 | 0.143 0.098 0.092 | 0.062 | 0.044 | 0.029 | 0.037 | 0.055
062 | 0.195 | 0.120 0.082 0.061 | 0.034 | 0.015 | 0.001 | 0.045 | 0.035
0.64 | 0.178 | 0.096 0.067 0.034 | 0.004 | -0.019 | -0.031 | 0.024 | 0.015
0.66 || 0.161 | 0.071 0.053 0.004 | -0.0290 | -0.053 | 0.012 | 0.005 | -0.004

SIC|OC (OO |O

0.68 0.145 0.051 0.040 -0.029 -0.066 | -0.091 0.001 -0.014 -0.023
0.70 0.130 0.034 0.031 -0.063 -0.104 0.001 -0.016 -0.031 -0.039
0.72 0.118 0.021 -0.011 -0.100 0 -0.014 -0.031 -0.044 -0.052
0.74 0.109 0.013 -0.037 -0.138 -0.012 -0.025 -0.041 -0.054 -0.062
0.76 0.104 0.012 -0.063 -0.003 -0.018 | -0.031 -0.046 -0.058 -0.065
0.78 0.104 0.016 -0.090 -0.006 -0.020 | -0.032 -0.046 -0.058 -0.065
0.80 0.103 0.021 -0.123 -0.008 -0.022 -0.033 -0.047 -0.058 -0.063
0.82 0.103 0.027 -0.165 -0.011 -0.024 | -0.035 -0.047 -0.057 | -0.062
0.84 0.102 0.034 0.013 -0.014 -0.026 | -0.036 -0.047 -0.057 | -0.061
0.86 0.102 -0.010 0.009 -0.017 -0.028 | -0.038 -0.048 -0.056 -0.061
0.88 0.102 -0.050 0.004 -0.020 -0.031 -0.039 -0.049 -0.056 -0.060
0.90 0.101 -0.107 -0.002 -0.024 -0.034 | -0.041 -0.049 -0.055 -0.057
0.92 0.101 0.033 -0.009 -0.029 -0.037 | -0.043 -0.050 -0.055 -0.058
0.94 0.101 0.023 -0.017 -0.034 -0.041 -0.046 -0.051 -0.055 -0.057
0.96 0.100 0.008 -0.027 -0.040 -0.045 -0.048 -0.052 -0.055 -0.056
0.98 0.100 -0.015 -0.039 -0.046 -0.049 | -0.051 -0.053 -0.054 -0.055
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Table b gives the value of the thresholds for each value of p. In the previous section, I find that
the thresholds S, and 8* must decrease (increase) while variance increases (decreases). Since the
variance increases with the correlation coeflicient, T have that thresholds decrease with p. These

findings confirm the results of Proposition 7.

Table 5: Thresholds for NTSEC

| 8 [[p=—08]p=-05]p=—02]p=0]p=02]p=05]p=08]p=1 stand-alone

B 0.68 0.48 0.40 0.36 0.32 0.30 0.26 0.26 0.52
B* 0.92 0.82 0.76 0.72 0.69 0.65 0.60 0.59 0.76

5.3 Results

Figures 10 and 11 show the differences in utility levels between the merger case with different

correlations and the stand-alone case.
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Figure 10: Negative Correlation and Merger

To analyze the effect of a merger, consider four cases: the perfect negative corrclation case
(p = —1), the negative (non perfect) correlation case (p = —0.5), the no correlation case (p = 0)

and the positive (non perfect) correlation case (p = 0.8).

Case 1: The case of perfect negative correlation is represented by p = —1. This situation could

arise when one firm has contracyclical revenues relative to the other one. Figure 12 shows
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Figure 11: Positive Correlation and Merger

the certainty equivalent in the stand-alone case CEg4 and in the merger case C'Eyr with

p=—1.
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Figure 12: Certainty Equivalent for the stand-alone case and the merger case with p = —1

Note that the form of the certainty equivalent in both cases have the same form but inverse.
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This particularity comes from the fact that, in the perfect negative correlation case, the firm
revenue is constant for any given 3. Consequently, there is no gain to sign a self-enforcing
contract. However, CE}; is decreasing since firm 1 must pay CEg4 to firm 2. Since CEgy4
depends on the value of 3, the certainty equivalent for the merger case is decreasing with 3
but always greater than the certainty equivalent of the stand-alone case.

Case 2: When revenues are negatively, but not perfectly, corrclated (p = —0.5), the benefit asso-

ciated with a merger can be positive or negative depending on the value of g.
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Figure 13: Certainty Equivalent for the stand-alone case and the merger case with p = —0.5

If 8 is lower than 0.48, there is no NTSEC for either the merged firm or the stand-alone
firm, as there is for the stand-alone firm. But, the merged firm has a smoother revenue
stream which leaves the firm with a gain by merging (see Figure 13). When S is between
0.48 and 0.52, it becomes possible for the merged firm to sign a NTSEC. The relative gain in
utility becomes more important. At 8 = 0.52, it is possible for the stand-alone firm to sign a
NTSEC. So the gain resulting from merging decreases and becomes negative at = 0.72. For
B > 0.82, it becomes possible for the merged firm to sign a first-best convergent contract. So
the gain increases again with 8 but there is a threshold for which the gain cannot overcome
the first-best convergent contract gain in the stand-alone case. After a small range of values
for 8 (between 0.84 and 0.88) for which the merged firm gains, the net gain decreases and

becomes negative.

What happens when 8 is close to 1 is another interesting case to study. When £ is high
enough, the merged firm and the stand-alone firm can sign a first-best convergent contract.
Then, why does the merger appear non-profitable for 3 close to 17 First, by Proposition
3, if B > (3*, then the optimal contract converges monotonically to a first-best contract.

Since T use the assumption that the reservation utility level for the market is equal to zero,
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the optimal contract, in both cases, converges to the first-best contract satisfying the self-
enforcing constraints of the market. Let’s suppose that §54 and 6 are those first-best

contracts. Then,

SA B SA
b+ s [b54]
W+ B

\
o

Il
o

where 534 and b are respectively the transfer in state s for the stand-alone case and the
merged case. 1 have already found (Equation (5)) that b = b. +y7 — y for i = SA, M. If I

introduce these equations into the market self-enforcing constraints, I find:

by A+ %Es[bf*‘ +10000—z,] = 0
vM 4 %Es[bf*‘ +20000 — 2] = 0
and
by A+ % (b7 + 10000 — 20000]) = 0
b+ % (b7 420000 — 40000]) = 0

I obtain that b = 2b4. This means that, once we subtract thc CEg4, thc merged cntity
obtains the same level of utility than the stand-alone firm. Consequently, the optimal con-
tracts of the merger case and the stand-alone case converge to first-best contracts that give

the same level of utility.

Second, I know that optimal contracts are not first-best. They converge to some first-best
contracts, but before state 1 is realized (see Section 3), transfers do not satisfy (5). Until then,
the stand-alone firm gain more than the merged firm. Because of the concavity of CARA
utility functions, the expected gain for being in the good state (state 2 for the stand-alone
case and state 3 for the merger case) is higher in the stand-alone situation. It is therefore
better for the firm to stand alone than to merge. This result applies to all cases where the

correlation coefficient is not —1.17

Case 3: The independent case (p = 0) characterizes firms involved in different markets which
are ncither complements nor substitutes. In this case, there is no gain from merging when
[ is lower than 0.36. At this point, the merged firm can sign a NTSEC which leaves the
firm better off. As for other cases, when 3 reaches 0.52, the gain from merging decreases.
When £ reaches 0.66, the net gain to merge becomes negative and remains negative while
[ increase. At § = 0.72, the merged firm can sign a first-best contract and the gain from

merging increases but it is counterbalanced by the stand-alone contracting gain (see Figure

17When the correlation coefficient goes to -1, then the value of 2 such that to stand alone is better increases. For
example, when p = —0.9, to stand alonc is better when £ is higher than 0.99.
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Figure 14: Certainty Equivalent for the stand-alone case and the merger case with p =0

Case 4: The case where firms produce complements is represented by a positive corrclation. With
positive correlation (p = 0.8), the net gain from merging is negative for 8 < 0.26 (see Figure
15). At 8 = 0.26, the merged firm signs a NTSEC and the gain starts to increase. For
8 between 0.52 and 0.60, the gain diminishes as the stand-alone firm signs a NTSEC. For
B > 0.60, the merged firm can sign a first-best contract. Consequently, the gain from the
optimal first-best contract increases but the benefit to sign a contract for the stand-alone firm
becomes more important, so the merger leaves more profits. Even with positively correlated
revenues, there is an interval of 8 (in this case between 0.42 and 0.66) for which a merger

could be profitable for the merged firm.

T can use the analysis T have from these different cases to draw general conclusions for the
question of merger in a self-enforcing environment. If revenues are nearly perfectly negatively
correlated, then the merger allows the new owner to smooth its revenues across time without any
contract. This situation leads to the agent always being better off merging.

What is interesting is the influence of the correlation on the gain of a merger. When revenues
are negatively correlated, the merger creates a kind of internal insurance market. The smoother
revenue schedule leads to a gain in utility by decreasing the variance of revenues but decreases the
possible gain from signing an insurance contract with the market. If beta is high but not too close
of 1, then the merger could be beneficial. Take the case where p = —0.8. The merger option lecaves
the merged firm with gain when g is greater than 0.92 but smaller than 0.98. For all p > —1, then
there exists a 3 < 1 such that for all 8 € [B 1), then to stand alone is better for shareholders.

With no correlation, the new owner has the possibility of signing a contract in the case where 3

is small. Since the variance has increased, the possibility to sign a NTSEC has increased. But, the
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Figure 15: Certainty Equivalent for the stand-alone case and the merger case with p = 0.8

agent may do better in the stand-alone case depending of the value of 8. As p goes to 1 (positive
correlation), the threshold for having a self-enforcing contract deercases but it is possible that the
gain from the contract cannot compensate the cost stemming from the increase of variance. So in

the end, the agent is worse over for the majority of values of 3.

6 Conclusion

In the first part of the paper, T explicitly solve the contract design problem with self-enforcing
constraints. To obtain this solution, T must impose additional constraints on the model. The
most important one is on the number of states of nature. The two states of nature problem is
relatively easy to solve since there are only two transfers in the stationary contract. With three
states, the number of transfers increases to four, and with four states, the number of transfers in
the stationary contract is eight. The number of transfers in the stationary contract increases more
quickly than the number of states of nature.

In the second part, T find that variance aflects the nature of the contract. If the variance
increases, then the potential benefits with respect to the contract increases and the threshold to
have a NTSEC decreases.

The most interesting finding is the effect of self-enforcing constraints on the effects of a merger.
T find that, even with a very high positive correlation between firms’ revenues, there is some
discount valuc for which firms could gain by a merger. The most important parameter in the
merger decision seems to be the discount factor. If owners are not really patient, then a merger
could lead to an increase in utility. This could explain in part why firms in the same market merge

together while their revenues are highly positively correlated.
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One of the possible avenues for future research would be to test the sensibility of these results

to a change in the risk-aversion coefficient. My guess is that it will not change the scheme of the
results but the level of thresholds.
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