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Abstract

We adapt Bushnell and Stoft (1996) allocation rule for property rights
on a merchant transmission network to the case where demand and supply
are stochastic. We show that the ef�ciency properties of this rule remain
when there is uncertainty. This suggests that implementation of merchant
transmission networks is more robust to uncertainty than it was previously
suggested in the literature.
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1 Introduction
Electricity transmission networks are said to be merchant if property rights are is-
sued for each transmission line and if the allocation of investment in lines results
from decentralized decisions on a free market. Merchant investment is possible
in electricity markets when ownership and operation of the transmission network
are separated. The transmission congestion rents, which are collected by an �In-
dependent System Operator � (ISO) through network operations, are distributed
among individual owners of transmission property rights. Investors in the net-
work receive new property rights according to an allocation rule set by a regula-
tory agency or by the ISO. This allocation rule takes into account that investment
in new transmission lines may modify the transmission capacity of existing lines.
Decentralized investment decisions can thus have external effects on the returns
of the owners of existing lines.
Bushnell and Stoft (1996) have proposed an allocation rule that eliminates

incentives to make investments which would reduce overall welfare. This rule
is implementable in a context of demand and supply certainty. Unfortunately,
uncertainty in demand and supply is ubiquitous in electricity markets. This has
led Joskow and Tirole ([3], p. 49)1 to conclude that

�non-contingent transmission rights cannot be de�ned properly to
capture the varying valuations of a transmission investment under the
many contingencies that characterize real electric power networks and
provide the right incentives to support ef�cient investments. Only
contingent rights provide the proper incentives�.

In this note, we adapt the Bushnell and Stoft [1] allocation rule of non-contingent
property rights to the case of stochastic demand and supply. We show that ef�-
ciency properties of the initial rule are maintained under uncertainty even though
rights are not contingent. This shows that implementing a merchant transmission
network is probably less a challenging problem than it is alluded in the literature.

2 The Model

2.1 Network Operations and Spot Prices
A transmission network links a set of N nodes and serves a set of K agents (re-
spectively with N and K elements). These agents can be generators, distributors,

1The section in which appears this passage is not present in the published version ([2]) of this
working paper.
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industrial consumers, etc, although they can play many roles on the network. For
instance, a generator at node i can be a distributor at node j. Demand and supply
conditions on the network are random. We denote qkis the net supply of agent k at
node i when the state of nature is s; qks = (qk1s; :::; qkns), the vector of agent's k net
supply. Agent's k generation costs (and/or consumption bene�ts) are represented
by a twice differentiable and strictly convex function, Ck : RN ! R.
We assume that there is no transmission loss on the network2 so that the ca-

pacity of the network to handle a total net supply of qs is resumed by a polyhedron
F � RN . Dispatch on the network is performed ex post in real time by the ISO
who manages to minimise the utilitarian loss:

min
qs;(q1s ;:::;q

K
s )

X
K

Ck(qks )

s.t.
X
K

qks = qs (1)

qs 2 F

Let ps and �s be the vectors of shadow prices of the aggregation constraints
and the network capacity constraints, respectively. Necessary and suf�cient con-
ditions for an optimal solution (q1�s ; :::; qK�s ) include:

rCk(qk�s ) = p�s (2)

If the market is perfectly competitive, the optimal allocation can be obtained in
a decentralized manner by letting agents purchase and sale electricity at nodal
prices p�s. Agent k then chooses qks that minimizes his private loss

Ck(qks )� p�s � qks

where the dot denotes the interior product. Let Qks(p�s) be the solution to the
agent's problem. Since he minimizes a strictly convex function, Qks(p�s) uniquely
solves the same necessary and suf�cient conditions (2) for a minimum. Aggregate
net supply is de�ned as Qs(p�s) =

P
K Q

k
s(p

�
s).

2.2 Transmission Rights and Hedging against Price Risks
A transmission property right of � kW on line ij is a �nancial title that pays at
each period �(pjs � pis) to its owner, where pis is the price at node i under state
of nature s. We use the N -vector t(� ; i; j) = (0;�� ; 0; :::; 0; � ; 0); where ti = ��
and tj = � ; to represent such a right and, following Bushnell and Stoft (1996), we

2The Appendix of Bushnell and Stoft show how to adapt the model to lossy networks.
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call it a �Transmission Congestion Contract� (TCC). Revenue from t under state
of nature s is then ps � t(� ; i; j). Letting T k represent the set of TCCs owned by
agent k, the combination of titles of the agent is given by tk =

P
t2Tk t(� ; i; j)

and the agent's expected transmission revenue is

Es(ps) � tk =
X
s

�s

NX
i=1

pist
k
i

where �s is the probability of state s.
We de�ne agent's k net bene�t function under spot prices ps as the sum of

transmission revenue, electricity supply revenue and cost:3

�k(ps; t
k) = ps �Qks(ps) + ps � tk � Ck(Qks(ps))

An agent can then eliminate transmission price risk by owning, at each node
i;TCCs in quantity

tki =
�Es(pisQkis(ps))

Es(pis)
(3)

since TCCs revenue Es(ps) � tk =
P

iEs(pis)t
k
i will exactly compensate for trans-

mission costs Es(ps �Qks) = Es(
P

i pisQ
k
is).

Lemma 1 shows that if an agent is fully protected against transmission price
risk, i.e. if titles are bought according to (3), he always gain from a change in
expected prices that increase production value at least as much than TCCs values.
This comes from the fact that he can always rearrange its output vector in order to
exploit the price change.4

Lemma 1. Let�Es(�k(t)) = Es(�k(p0s; t))�Es(�k(ps; t)) be the change in net
bene�t after a change in expected prices fromEs(ps) toEs(p0s) 6= Es(ps) and let k
be an agent owning a vector tk that satis�es (3). IfEs(p0s�Qks(ps))+Es(p0s)�tk � 0,
then �Es(�k(tk)) > 0.

3If an agent is a consumer, net supply revenue represents electricity expenditure and cost rep-
resents consumer's surplus or utility.

4The lemma and theorem of this paper, as well as their proofs, are equivalent to those presented
in Bushnell and Stoft (1996). The differences come from their adaptations to uncertainty.
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Proof.

�Es(�(t
k)) =

X
s

�s
��
p0s �Qks (p0s)� ps �Qks (ps)

�
+
�
p0s � tk � ps � tk

�
�[Ck((Qks(p

0
s))� Ck(Q

k
s(ps))]

o
=

X
s

�s
��
p0s �Qks (p0s) + p0s � tk

�
�
h
Ck(Qks(p

0
s))� Ck(Q

k
s(ps))

io
�

X
s

�s
��
p0s �Qks (p0s)� p0s �Qks(ps)

�
�
h
Ck(Qks(p

0
s))� Ck(Q

k
s(ps))

io
(4)

where the second equality is obtained from (3) and where the inequality comes
from the assumption that Es(p0s � (Qks(ps))) +Es(p0s) � tk � 0. At a nodal equilib-
rium, Qks (p0s) will be set such that p0s = rCk

�
Qks (p

0
s)
�
. Substituting for p0s in (4)

gives

�Es(�
k(tk)) �

X
s

�s
�
rCk

�
Qks (p

0
s)
� �
Qks (p

0
s)�Qks(ps)

�
�
h
Ck(Qks(p

0
s)� Ck(Q

k
s(ps)

io
(5)

Convexity of Ck implies that the term in curly brackets in (5) is non-negative
whatever is s. As a result�Es(�k(tk)) � 0. If C is strictly convex, then the term
in curly brackets is positive.
Under (3) the value of initial production (before the change of price) is equal to

the value of TCCs at initial prices. Assumption Es(p0s �(Qks(ps)))+Es(p0s) � tk � 0
thus implies that the change in expected prices are such that production value
increases more than the value of TCCs.
Lemma 2 shows that the results of Lemma 1 applies to groups of agents as

well as to individual agents. Let G be a group of agents. The group's net supply
is QGs (ps) =

P
k2GQ

k
s(ps) and collective ownership of TCCs amounts to tG =P

k2G t
k. The group's net bene�t is then given by:

�G(ps; t
G) = �G(ps;

X
k2G

tk) =
X
k2G

�k(ps; t
k)

and the change of the group's marginal bene�t following a change in expected
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prices from Es(ps) to Es(p0s) is:

�Es(�
G(tG)) = Es(�

G(p0s; t
G))� Es(�G(ps; tG))

=
X
k2G

(Es(�
k(p0s; t

k))� Es(�k(ps; tk)))

=
X
k2G

�Es(�
k(tk))

Lemma 2. Let G be a group of agents whose TCCs ownership tG is such

tGi =
�Es(pisQGis(ps))

Es(pis)
;8i (6)

If Es(p0s � (QGs (ps))) + Es(p0s) � tG � 0, then �Es(�G(tG)) � 0.

Proof. Assume that group G holding of TCCs satis�es (6) and consider the
initial distribution of TCCs among group members. A change in TCC distribution
does not impact on electrical �ows on the network since dispatch is performed in-
dependently of the allocation of TCCs. Assume an initial TCC distribution among
group members and redistribute the TCCs so that it satis�es (3). Such a redistrib-
ution is always feasible since:X

k

tki = �
X
k

�
�Es(piqks (ps))
Es(pis)

�
=

�
�Es(pi

P
k q

k
s (ps))

Es(pis)

�
= tGi

So it is possible to redistribute rights so that they satisfy (3) individually. Now
consider the price change. By lemma 1, each member of the group will have
�Es(�

k(tk)) � 0, so that this is also true that�Es(�G(tG)) =
P

k2g�Es(�
k(tk)) �

0. Now redistribute the rights in their original pattern. Again, this leaves�Es(�(tG))
unaffected.

2.3 Allocation Rule and Investment Incentives
As �nancial rights, TCCs can in principle be emitted without any relation to the
network operations. However, TCCs are generally issued by the ISO and ISO
revenues are composed of transmission congestion rents. To insure that the ISO
breaks even, one can constrain that total TCCs issued, T =

P
k

P
t(�;i;j)2Tk t(� ; i; j),

be such that
Es(p

�
s) � T = Es(�p�s �Qs(p�s)) (7)

where p�s is the vector of nodal equilibrium prices.

6



Lemma 3. If T satis�es constraint (7), aggregate expected net bene�t corresponds
to expected welfare, i.e.

Es(�(p
�
s; T )) = Es(W (Qs(p

�
s))

where �(ps; T ) =
P

K �
k(ps; t

k) andW (Qs(ps)) = �
P

K C
k(Qks(ps))

Proof. By de�nition,

Es(�(p
�
s; T )) =Es

"
p�s �Qs(p

�
s)�

X
k

Ck(Qks(p
�
s))

#
+ Es(p

�
s � T ) (8)

But Es(p�s � T ) =Es(�p
�
s �Q(p

�
s)), which implies that

Es(�(p
�
s; T )) =Es(�

X
k

Ck(Qks(p
�
s))):

As a result, Es(�(p�s; T )) =Es(W (Qs(p�s))):
When transmission property rights is created over an existing network, initial

allocation rule used is the simplest that meets constraint (7).

De�nition 1. The initial allocation rule is such that:

Ti =
�Es(p�isQsi(ps))

Es(p�is)
;8i (9)

Investment in transmission lines modify network con�guration. The allocation
rule for investment warrants that the ISO will break even after the investment as it
did before the investment.

De�nition 2. The investment allocation rule grants a modi�er of the grid the
right to take any set T̂ of TCCs that is such that the dispatch corresponding to
�(T + T̂ ) satis�es (9) under the new grid con�guration, where T is the previously
allocated set of contracts. We thus have

T̂i =
�Es(p0isQsi(p0s))

Es(p0is)
� Ti;8i (10)

where p0s represents the vector of equilibrium nodal prices after investment under
state of nature s:

Proposition 1. Consider a modi�cation to the grid such that Es(p0s � Qs(p�s)) +
Es(p

0
s � T ) � 0. If the initial allocation satis�es (9) and the investment is granted

TCCs according to (10), then the investor's rights have a negative value: Es(p0s �
T̂ ) < Es�W .
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Proof. From Lemma 3, we have:

Es(�(p
�
s; T )) = Es(W (Qs(p

�
s))) (11)

Es(�(p
0
s; T + T̂ )) = Es(�(p

0
s; T )) + Es(p

0
s � T̂ ) = Es(W (Qs(p0s))) (12)

Substracting the �rst equality from the second one, we obtain:

Es(p
0
s � T̂ ) = Es�W � Es��(T ) (13)

Since Es��(T ) > 0, we proved the result.

Corollary 1. Consider a modi�cation to the network that is such that
(i) Es�W < 0
(ii) Es(p0s �Qs(p�s)) + Es(p0s � T ) � 0
then Es(p0s � T̂ ) < 0:

Proof. This follows directly from Proposition 1.
The proposition and its corollary describe the relation between transmission

right allocations and externalities of investment on the network. From the corol-
lary, if an investment reduces welfare, the value of TCCs that would obtain an
investor is negative. This eliminates incentives to invest. However, from the
proposition, we see that it is possible that Es(p0s � T̂ ) < 0 < Es�W , so that an
investment that is socially desirable is not undertaken.
The important point to notice is that these results are exactly the same than

those obtained by Bushnell and Stoft (1996) under certainty. They are obtained
even though property rights are not contingent.

3 Conclusion
Ef�ciency properties of merchant transmission networks that have been proven
in the economics literature depend on strong assumptions that are generally not
met in actual electricity markets.5 But this does not mean that these ef�ciency
properties are not robust to some departures of assumptions. In this note, we
have de�ned non-contingent property rights that preserve the ef�ciency properties
proven by Bushnell and Stoft. As a result, the merchant transmission investment
is probably easier to implement in face of uncertainty than it has been believed.
This is not to deny the important gap that still exists between models of merchant

5See Joskow and Tirole Joskow and Tirole (2005) for a precise account of these assumptions
and problems encountered in implementing merchant transmission investment when these condi-
tions are not met.
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transmission investment and reality,6 but in face of the potential gains of merchant
investment, we believe it is important to assess the exact consequences of this gap.
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