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1 Introduction

This paper studies some economic aspects of the problem raised by the fact that antibiotic consumption

tends to deplete the efficiency of many antibiotics in combating bacterial infections, as the bacteria develops

resistance to the antibiotic. We analyze the exploitation of antibiotic efficiency in a market subject to

open access on the part of antibiotic producers to the common pool of efficiency and compare it to the

social optimum. We derive the demand function for the antibiotic under the assumptions that individuals

differ with respect to their valuation of being in good health and are aware of the probability that the

antibiotic treatment is effective. Antibiotic efficiency is modelled as a common pool renewable resource.

The dynamics of the antibiotic efficiency is based on an epidemiological model (the SIS-model) borrowed

from the biological literature, with one antibiotic treatment for one particular bacterial infection. The open

access equilibrium and the social optimum are derived subject to the demand for the antibiotic and the

underlying epidemiological model, which describes the dynamic interaction between the level of efficiency of

the antibiotic and the level of infection in the population.

We find that the industry under open access does not completely deplete the stock of antibiotic efficiency.

Rather, the equilibrium levels of efficiency and infection tend to a steady state where the efficiency renews

itself to maintain the steady state. This market outcome is however not socially optimal. The optimal solution

may combine extreme controls (treat all of the infected population or treat none) and singular controls (treat

a fraction which changes over time), or it may involve only an extreme control, depending on the parameters
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of the model. The socially optimal solution also leads to a steady state, which will in general be different

from the open access steady state. The steady state is reached faster in the social optimum than in the

open access equilibrium. As the social planner also values individuals that are in good health, he has an

interest to decrease infection faster, as this will reduce the spread of the infection in the future. This positive

intertemporal externality drives the working of the optimal solution and leads to a lower steady-state level of

efficiency than in open access. The steady-state levels of infection are in general the same as in open access.

Analyzing the problem of bacterial resistance due to antibiotic treatment in the context of economic models

is relatively new. Some contributions, beyond others, that have been made are from Laxminarayan and

Brown (2001), Rowthorn and Brown (2003) as well as Wilen and Msangi (2003). These contributions all use

a version of a SIS-model and differ with respect to either the renewability of the antibiotic efficiency or the

number of antibiotic treatments available. We review these contributions here shortly.

With the help of analytical case studies, Laxminarayan and Brown (2001) show in the context of a single

bacterial infection and two antibiotic treatments having non-renewable efficiency, that the more effective

treatment should be applied first if both antibiotics have the same treatment cost, and that the less costly

should go first if both antibiotics have initially the same efficiency. The second antibiotic should only come

into use if either it has the same efficiency as the one used first or if the implicit value associated to the

initially more effective antibiotic has sufficiently decreased to compensate for the higher treatment cost of

the second antibiotic. The proportion of the antibiotic in simultaneous use is inversely related to the rapidity

with which efficiency decreases and the cost differential.

Rowthorn and Brown (2003) study the case of two antibiotics used to treat two infections, each antibiotic

being only effective with respect to one infection. Society must decide on the allocation of its resources

between the two treatments ; it is supposed to be capacity constraint as there cannot be double treatments

within infected individuals. The allocation depends on the treatment costs and on the social cost associated

to each of the infections. The authors present an arbitrage condition between the less expensive antibiotic

and the infection implying a higher social cost due to its predominance.

Wilen and Msangi (2003) define an optimal control problem with constraints from the SIS-model referring

to only one antibiotic treatment available for a single infection. Efficiency of the antibiotic is supposed

2



renewable. The authors show that after a period of an initially extreme control, a singular control applies :

the fraction of the population treated tends to the level where efficiency is renewable and can remain constant.

This singular control is determined analytically as a feedback solution with respect to the current state of

efficiency and of infection with respect to their steady state values.

Our paper is structured as follows. In section 2 we present the SIS-model from which we define antibiotic

efficiency and derive the constraints for the optimal control problem of the social planner. In section 3 we

derive the demand for the antibiotic on the basis of a model of vertical differentiation. The market equilibrium

under open access is derived in section 4. In section 5, we characterize the socially optimal outcome. In section

6, we compare market outcome and social optimum. We conclude in section 7.

2 The Epidemiological Constraints

Before deriving the market demand for the antibiotic, we have to consider the epidemiological constraints.

We suppose that total population at time t is given by N(t) = S(t) + I(t) = S(t) + Iw(t) + Ir(t), where S

refers to the population being in good health and I is the population infected. I can be further partitioned

into those individuals infected with a drug-susceptible strain (Iw) and those infected with a drug-resistant

strain (Ir). An individual being infected ignores whether he is infected with a drug sensitive strain or a drug

resistant strain.1 Population dynamics leading to the SIS-model have been derived first by Ross (1911) and

Kermack and McKendrick (1927) in order to model the spread of malaria. The evolution of the partition

into healthy and infected population is captured by the following equations (the time indices are omitted) :

dS

dt
= E − nS − βS(Iw + Ir) + rwIw + rrIr + fIwrf (1)

dIw
dt

= (βS −m− rw − frf )Iw (2)

dIr
dt

= (βS −m− rr)Ir (3)

1 It is of course possible to verify the sensitivity of the infectious strain with respect to the antibiotic, but we suppose that
this is not generally done because of costs for analyzing the strain in a laboratory, costs of delay, and the potential difficulty to
take a sample from the herd of infection.
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E refers to the number of entries into the system (births), n andm are death rates of the healthy and infected

population respectively. The parameter β represents the transmission rate of the infection between healthy

and infected population. rr and rw refer to the natural recovery rates - i.e. without any treatment - from the

drug-susceptible and the drug-resistant strain respectively, while rf is the augmented recovery treatment for

effective antibiotic treatment. In the equations stated above f refers to the fraction of the infected population

that takes treatment. For total population to be constant over time, we impose E = n = m = 0.

It is clear that because of the constant population, equation (1) will be redundant and we can restrict

our analysis on equations (2) and (3). We want to derive the dynamics for the state variables of interest

w(t) and I(t), where w(t) is defined as the proportion of the infected population that is suffering from a

drug-susceptible strain and can be interpreted as the efficiency (rate) of the antibiotic treatment. We have

dw

dt
=

d
¡
Iw

I

¢
dt

=
İwI − Iwİ

I2
and

dI

dt
=

dIw
dt

+
dIr
dt
.

Replacing S(t) = N − I(t), and using equations (2) and (3), latter equations can be rewritten to obtain :

dw

dt
= w(1− w)(∆r − rf f) (4)

dI

dt
= (β(N − I)− rr)I + wI(∆r − rf f) (5)

where ∆r = rr − rw refers to the fitness cost of infection.2 When the fitness cost equals zero, then efficiency

of the antibiotic drug can be considered as a nonrenewable resource as equation (4) shows. For positive

values of f , dwdt is negative. However, when the fitness cost is positive, the efficiency of the antibiotic becomes

a renewable resource. The fitness cost is a crucial element in the analysis of antibiotic resistance. Our

formulation allows to treat all cases such that ∆r = 0.

For later analysis we characterize the steady states, wSS and ISS , at which dw
dt =

dI
dt = 0. As can be seen

2The term ”fitness cost” has been before in the economic literature on antibiotic resistance and was borrowed from the
epidemiological vocabulary. It refers to the fact that resistant bacterial strains naturally clear more frequently (at rate rr) as
do their antibiotic susceptible twins (at rate rw). The feature of resistance thus comes at a cost of survival for the antibiotic
resistant strains.

4



from equation (4), three different steady states for efficiency are possible : (1) wSS = 0, (2) wSS = 1 and (3)

any value for efficiency as long as the fraction of the infected population receiving the antibiotic is fSS = ∆r
rf
.

Combining the information on the three steady states for efficiency with equation (5) and setting the latter

equal to zero, we obtain the steady state values for infection. The steady states are summarized in the

following table :

Steady State wSS ISS

(1) 0 βN−rr

β

(2) 1
βN−rw−rf fSS

β

(3) n.d. with fSS = ∆r
rf

βN−rr

β

It turns out that the system of differential equations is nonautonomous. In our context, this means that it is

not possible to draw a unique phase diagram for changing values of f ∈ [0, 1], which, we remind is the fraction

of the infected population being treated with the antibiotic. This would actually imply the construction of

a three-dimensional phase diagram, which is a rather cumbersome job.

In order to construct the phase diagrams in the plane (w, I) with respect to f , we concentrate on certain

values that f may take and characterize the isoclines for w and I given by dw
dt = 0 and

dI
dt = 0. It is directly

seen, that dw
dt = 0 implies w = 0, w = 1 or f =

∆r
rf
(refer to the steady states before). The isocline for I is

obtained after setting equation (5) equal to zero and solving for, say w. This gives for rff 6= ∆r :

w =
rr − βN

∆r − rf f +
β

∆r − rf f I (6)

It is important to recognize that equation (6) is not defined for f = ∆r
rf
and that it represents a line with

negative or positive steepness depending on whether f > ∆r
rf
or f < ∆r

rf
. In the case of f = ∆r

rf
, the isocline

for I will be a vertical line passing through the steady state ISS = βN−rr

β .

We can now draw the phase diagrams for f ∈ [0, ∆rrf
), f ∈ (∆rrf

, 1] or f = ∆r
rf
. Consider Figures 1.a, 2 and 3

respectively.3

3Figures1.a and 2 have already been presented in Msangi and Wilen (2003) for the limit values for f , i.e. f = 0 and f = 1.
We want to point out that it is possible to contruct a respective phase diagram for all values of f belonging to a particular
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The forces driving the state variables when not on the isoclines are indicated by arrows. Latter are obtained

for w, by noting that when f > ∆r
rf
, then w is decreasing (respectively, f < ∆r

rf
implies w to be increasing),

and f = ∆r
rf
implies w to remain at any initial value. We can thus trace the vertical arrow in the phase diagram

(consider Figure 1.a, b and 2). In Figure 3, a vertical movement is not possible as dwdt = 0 everywhere.

In order to derive the forces that are driving I in the phase diagram, we can calculate the derivative d(İ/I)
dw .

It is easily verified that d(İ/I)
dw = ∆r − rff . The derivative is thus positive (negative) in the Figure 1.a (in

Figure 2) and we can check the direction of the horizontal arrow. In the case of f = ∆r
rf
(Figure 3), equation

(5) simplifies to

İ

I
= β(N − I)− rr,

which implies d(İ/I)dI = −β < 0. The arrows thus point towards the vertical isocline which represents also all

steady states for w and I.

From this analysis, we can conclude that the system will converge for a given value of f to steady state (1),

at which wSS = 0, if f ∈ (∆rrf
, 1] (see Figure 2), and that the system will converge to steady state (2), at

which wSS = 1, if f ∈ [0, ∆rrf
) (see Figure 1.a). Figure 3 shows the location of steady state (3) for f = ∆r

rf
.

We have mentioned before that the system is nonautonomous. Graphically, this characteristic of the dynamic

system is captured by the fact that the I-isocline pivots for changing values of f .

As an example, consider two values of f , with fi ∈ [0, ∆rrf
), i = 1, 2. and f1 < f2 < ∆r

rf
. fi remains constant

over time. Then, for the two values of f , the phase diagram has the form that has been specified in Figure

1.a. In Figure 1.b we characterize the pivoting I-isocline : it has a steeper slope for values of f that are

closer to ∆rrf
. We have also indicated the forces driving the system when out of the isoclines (dotted lines

are for f = f2). The system will converge to steady state (2), given by w = 1 and ISS(2) (fi) =
βN−rw−rffi

β ,

with ISS(2) (f2) < I
SS
(2) (f1) respectively. Indeed, when a relatively higher fraction of people is treated with the

antibiotic (here f2), the overall recovery rate from infection is higher and thus less individuals will be infected

at the steady state. This implies that for any value of efficiency different from its steady state value, say w̄,

intervall.
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the level of infection at which İ = 0 and indicated by Ī |fi should be lower, when a higher fraction of the

infected population is treated. Thus, the I-isocline should have a lower slope when a lower fraction of the

infected population is treated.

Dynamics become even more complicated when f changes over time, say from lower values (like f1) to higher

values (like f2). The I-isocline will pivot and become steeper as f rises. It is however impossible to draw a

characteristic path leading to the steady state (2), as has been done in Figure 1.a, although we know that the

system still reaches this steady state, and that, when f approaches ∆rrf
, the I-isocline becomes the vertical

shown in Figure 3.

We have described the nonautonomous system for values fi ∈ [0, ∆rrf
). The same reasoning applies also to fi

∈ (∆rrf
, 1].

To which one of the three steady states the system will tend, depends on the intertemporal evolution of

f . Before characterizing the evolution of f in the case of open access and the social optimum, we have to

develop the demand for the antibiotic.

3 The Demand

The demand function for the antibiotic at time t is derived from a classical model of vertical differentiation.

Suppose a consumer has a valuation θ of being in good health. θ is distributed over population N with

distribution function F (θ).

Suppose further that a consumer can decide whether to buy an antibiotic at price p or not when he is

infected. The utility of the assumed type θ can be represented as :

u(θ) =

⎧⎪⎪⎨⎪⎪⎩
θ, if in good health

EU(θ, w, p), if infected

⎫⎪⎪⎬⎪⎪⎭
with EU(θ, w, p) being the utility resulting from the expected utility maximization problem of the infected

individual, where the decision variable is whether to take or not to take the antibiotic if infected.4 It is given

4Actually, it is the physician who prescribes the antibiotic to the patient. The patient then decides whether to purchase the
antibiotic or not. This decision probably also depends on the insurance coverage of the patient. In the model that we present,
we abstract from this fact. It could be easily introduced into the model, when the physician, following a ”rule of thumb”,
prescribes the antibiotic to a constant fraction of the infected population. He may however have a strategy, such as to minimize
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by :

EU(θ, w, p) = max{π(w)θ, [π(w) + rfw]θ − p}

where π(w) = wrw + (1 − w)rr represents the probability of recovering without antibiotic treatment when

infected and [π(w) + rfw] is the probability of recovery when infected and taking the antibiotic. We obtain

π(w) in the following way : an individual that is infected has a risk of Ir

I = 1− w of being infected with a

drug-resistant strain. He thus recovers with ”probability” rr whether he takes the antibiotic or not. He has

a risk of being infected with the drug-susceptible strain given by : Iw

I = w and a recovery rate of rw in that

case. The mean recovery rate when not buying the antibiotic is thus given by the sum π(w). In the case

where the individual buys the antibiotic, he increases his chances of recovery only if the drug is effective, i.e.

the bacterial strain he is suffering from is susceptible to treatment. Thus, we have to add the term rfw for

the recovery probability when buying the antibiotic.

Denote by θ̃ the consumer who is indifferent between buying the antibiotic or not. θ̃ is given by :

π(w)θ̃ = [π(w) + rfw]θ̃ − p⇔

θ̃ =
p

rfw
. (7)

Individuals with θ > θ̃ will thus buy the antibiotic, and those with θ < θ̃ will not. If the whole population N

were infected, the proportion of individuals willing to buy the antibiotic would be [1−F (θ̃)]. But this is not

the case : uninfected individuals won’t buy the antibiotic. If we assume that the infection spreads equally

over the population N (being infected and having a certain valuation θ are independent events5), then the

fraction of the infected population willing to buy the antibiotic is given by : IN

h
1− F

³
θ̃
´i
. Since consumers

the infection level at time t, without questioning the effects on future infection levels. Or he may make the fraction depend
on the levels of efficiency and infection, for instance. This point merits more attention and is left for future research. It points
out the question of whether an ”intelligent” strategy for the physician exists allowing the society to attain the socially optimal
outcome.

5Define the joint probability of an individual i to be infected (i = I) and heaving a valuation higher than θ̃ as Pr(i = I, θi ≥ θ̃).

Then, by independence, we have Pr(i = I, θi ≥ θ̃) = Pr(i = I) Pr(θi ≥ θ̃) = I
N

h
1− F

³
p

rf w

´i
.
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have a unitary demand, total demand is given by :

Q = N
I

N

h
1− F

³
θ̃
´i

= I

∙
1− F

µ
p

rfw

¶¸
.

Therefore the inverse demand function is :

P

µ
Q

I
,w

¶
= rfwF

−1
µ
1− Q

I

¶
(8)

If we assume a unitary distribution for θ, the inverse demand function becomes :

P

µ
Q

I
,w

¶
= rfw

µ
1− Q

I

¶
(9)

Because of unitary demand, QI represents the fraction of the infected population treated and is thus equal

to the parameter f in the dynamic constraints (4) and (5). The inverse demand function depends on the

fraction of the infected population being treated (Q(t)I(t) ) as well as the efficiency of the antibiotic drug (w(t)).

Our formulation of the antibiotic demand supposes that individuals are not perfectly informed about the

kind of infection they suffer from, but they know the state w(t) of the system, as does the producer of the

antibiotic.

For later analysis, we calculate the marshallian consumer surplus (CS(Q)) associated to the inverse demand

function (9). It is given by :

CS(Q) =
1

2

∙
rfw − rfw

µ
1− Q

I

¶¸
Q

=
1

2
rfw

Q2

I
. (10)

4 Open Access Equilibrium

Suppose that the antibiotic industry inherits a stock of efficiency and infection at time 0 of (w0, I0). Under

open access, producers will enter until, at equilibrium, price equals average production costs. Let Qoa be the
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total amount of the antibiotic sold in the market under open access, and qoai be the amount sold by producer

i. Assuming the firms to be identical, we must have, in equilibrium,

qoai =
Qoa

n
≡ qoa

such that

P (
nqoa

I
, w) =

C(qoa)

qoa
. (11)

If n need not be an integer, this condition implies zero producer surplus for each firm at any time.6

Suppose as a simple case that the cost function is given by C(qi) = cqi, where c > 0.7 Then the open access

condition (11) becomes

P (
Qoa

I
, w) = c (12)

and we can easily derive Qoa to be :

Qoa(t) = I(t)

µ
1− c

rfw(t)

¶
(13)

Thus, the fraction of the infected population treated with the antibiotic under open access is given by :

foa(t) =
Qoa(t)

I(t)
=

µ
1− c

rfw(t)

¶
, (14)

which is strictly positive, as long as rfw(t) > c. Consequently, when this last condition is verified for a given

value of w(t), the antibiotic is economically viable.8

We first analyze the regime of open access at the different steady states. Second, we analyze whether the

6 If we want n to be an integer only, then n is the biggest number such that a firm turns over, while n + 1 would imply
negative profits for each firm. We may then have positive profits for each incumbent firm under open access as long as the
antibiotic’s efficiency is economically viable.

7This allows us not to consider the number of firms n in the market.
8As the maximum value for w is one, we must have as a necessary condition for a non-trivial problem : rf > c.
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system converges to such a steady state.

4.1 Steady State under Open Access

At steady state (1) with wSS(1) = 0 and I
SS
(1) =

βN−rr

β no firm would like to enter the market as it would incur

negative profits. In this case demand has vanished and therefore, in equilibrium, Qoa(1) = 0.

At steady state (2), wSS = 1 and ISS = βN−rw−rf fSS

β . Replacing the value for foa from condition (13)

gives :

wSS(2) = 1 (15)

ISS(2) =
βN − rw − rf + c

β
(16)

Qoa(2) =
βN − rw − rf + c

β

µ
1− c

rf

¶
(17)

At steady state (3), the value for w hasn’t been determined yet. The open access condition (13) in combination

with the steady state condition for efficiency, foa = Qoa

I = ∆r
rf
give : ∆rrf

= 1− c
rfw

. This implies

wSS(3) =
c

rf −∆r (18)

and ISS(3) =
βN − rr

β
. (19)

The sustainable amount of antibiotics produced is given by equation (13) after replacing (18) and (19) as :

Qoa(3) =
βN − rr

β

µ
1− rf −∆r

rf

¶
, (20)

which is independent of the marginal cost of production c, but one should remind that the fraction served by

the antibiotic produces foa depends on c. This is so because the inverse demand function, i.e. the valuation

of the antibiotic, which must equal c in every point of time, can be expressed in terms of the fraction f , and

thus depends only on the fraction and the level of efficiency. At steady state terms cancel out such that the

quantity does not depend on the marginal cost of production.
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4.2 Evolution Towards Equilibrium

The firms that are in the market under open access start at time t = 0 with a stock of efficiency, w(0) = w0,

and a stock of infected population, I(0) = I0. As long as rfw > c, the antibiotic remains economically viable

and firms produce a positive amount. In what follows, we will show that the state variables will converge

asymptotically to steady state 3 from any couple of initial interior values (w0, I0).9 Figure 4 shows four

representative paths of the state variables w, I leading to steady state 3 from any initial state (w0, I0) lying

in regions I, II, III and IV. We distinguish between these regions as they allow us to specify, whether the

fraction foa is bigger or smaller than its critical efficiency-renewable value ∆rrf
. Clearly, in regions I and II,

w0 > w
SS
(3) , while in regions III and IV, w0 < w

SS
(3) . The respective limit between regions I and II on the one

hand, and III and IV on the other hand, will be determined by the pivoting I-isocline. In Figure 4, we show

the partition of regions with respect to the I-isocline when it is a vertical line through steady state value

ISS(3) .

Evaluate foa(t) from equation (14) at (w0, I0). In regions I and II, initial values (w0, I0) are such that :

foa(0) =
Qoa(0)

I0
= 1− c

rfw0
>
∆r

rf
,

which implies that the I-isocline has a negative slope (recall equation 6) and that the forces driving the

dynamic system initially are those that have already been shown in Figure 2. As foa > ∆r
rf
, efficiency will

be decreasing, i.e. ẇ < 0 and will lead to a decreasing level of the fraction foa served. While efficiency will

monotonously decrease down to its steady state value wSS(3) =
c

rf−∆r , where f
oa attains ∆rrf

, the evolution of

the level of infection depends on whether one starts to the left or to the right of the I-isocline. In any case,

the I-isocline is pivoting to the north-east as the system is non-autonomous and foa changes. When I0 lies

to the left of the I-isocline, infection will monotonously increase up to its steady state value. When I0 lies

to the right of the I-isocline, the level of infection will perform what one may call ”undershooting”, which

means that it temporarily falls below its steady state value but attains it finally. These cases are depicted in

9By ”interior” we mean that the initial state of efficiency is not on its defintion limits, i.e. w0 6= 0, w0 6= 1. Also, for the
level of infection, we must have I0 6= 0. Differently, the whole population remains in good health for all time (consider equation
5) and there is no market for the antibiotic.
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Figures 5.a and 5.b.

In Figure 5.a, (w0, I0) lies in region I and forces drive the system in the south-eastern direction, which implies

a depletion of efficiency and an increase in the infected population. However, the state variables always remain

to the left of the pivoting I-isocline. Efficiency and infection attain the steady state asymptotically.

For the efficiency variable, this can be shown by linearizing the law of motion equation for w evaluated at

foa around steady state 3. Combining equations (4) and (14) gives the linearized equation :

ẇ(t) =
³
(rf −∆r)(wSS(3) − 1)

´ h
w(t)− wSS(3)

i
≡ κ1

h
w(t)− wSS(3)

i
. (21)

The change in w at time t is the product of the distance
h
w(t)− wSS(3)

i
and the term κ1 < 0, with |κ1| < 1.

For equation (21), this implies that ẇ < 0 if w(t) > wSS(3) , that ẇ > 0 if w(t) < wSS(3) and that efficiency

approaches the steady state level only asymptotically.

The level of infection cannot neither attain its steady state value in finite time. Suppose infection were to

attain its steady state in finite time T and that, in term, İ(T ) = 0. Then, from Figure 5.a, the efficiency

level would necessarily be greater than its steady state level, i.e. w(T ) = c
rf−∆r−² > w

SS
(3) , with ² > 0. From

equation (14), the fraction served would be

foa(T ) =
∆r

rf
+
²

rf
.

Replacing latter expression in equation (5) for İ(t), we clearly have İ(T ) 6= 0, which is in contradiction to our

hypothesis that infection has already attained its steady state level. Thus, neither efficiency, nor infection

can attain their steady state in finite time. This logic of this proof applies for all the regions of the initial

state (w0, I0).

In Figure 5.b, the initial state (w0, I0) lies in region II, i.e. to the right of the I-isocline (İ = 0|t=0). Because of

the relatively high value of initial efficiency, the fraction foa is also high. This leads to a decrease in efficiency,

implying a change in f over time and a pivoting I-isocline. The trajectory crosses the I-isocline (İ = 0|t=t1)

at time t1and remains to the left of the pivoting isocline thereafter (example : İ = 0|t=t2). The dynamics
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lead the state variables to their respective steady state values simultaneously but asymptotically (see Figure

5.b). While efficiency decreases monotonously, the path of infection is characterized by an ”undershooting”

pattern. This means, that the level of efficiency decreases initially below its steady state value (in Figure 5.b,

the minimum is attained at t1), before it increases up to its steady state ISS(3) . Our many numeric simulations

have been characterized by this undershooting pattern when starting from region II. The intuition of this

undershooting pattern is that due to the relative high value of efficiency, and the dynamic forces which tend

to decrease infection in region II, the level of infection can be brought temporarily below its steady state

level (up to t1). As efficiency continues to decrease, the level of infection starts rising from t1 on to obtain

its steady state asymptotically.

We turn now to initial values (w0, I0) lying in regions III and IV. We thus have :

foa(0) =
Qoa(0)

I0
= 1− c

rfw0
<
∆r

rf
,

which implies that the I-isocline has a positive slope and that the forces driving the system are those already

shown in Figure 1.a.

The level of efficiency w0 may be below the level of economic viability c
rf
. In such a case, foa = 0 initially,

which, if fitness cost is positive, allows efficiency to increase to the level where it becomes economically viable.

Once economic viability is reached, potential trajectories for the evolution of state variables are shown in

Figures 6.a and 6.b.

In Figure 6.a, initial state (w0, I0) is located in region IV and the dynamics drive the system towards the

north-east. The increasing value of efficiency allows the fraction foa to increase over time and to approach

∆r
rf
. The changing value for foa induces the isocline to pivot to the north-west (e.g. İ = 0|t=t1), hence

becoming steeper until it reaches the vertical line. This will occur when foa = ∆r
rf
. While the evolution

for efficiency is monotonously increasing, there will be ”overshooting” for the level of infection. The level

of infection increases above its steady state value up to time t1, where the system crosses the İ = 0|t=t1
isocline. From there on, the system will remain to the right of the I-isoclines (e.g. İ = 0|t=t2) and infection

decreases down to its steady state level.

In Figure 6.b we show a case, in which the initial state (w0, I0) is to the right of the initial I-isocline (in
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region III). As foa < ∆r
rf
, efficiency can increase and thus foa also increases. This induces the I-isocline to

pivot (consider İ = 0|t=t1). The trajectory of efficiency and infection doesn’t cross an I-isocline and will

remain in region III up to convergence. The level of efficiency increases monotonously as does the level of

infection.

Consider finally the case where the initial state (w0, I0) is located on the limit between the regions I, II and

III, IV, which implies w0 = wSS(3) . Thus f
oa = ∆r

rf
and the forces driving the dynamics are those described

in figure 3. Infection I converges to steady state asymptotically, while efficiency remains at its steady state

level.

An important conclusion is that, under open access, the dynamic system will converge to steady state (3),

wSS(3) =
c

rf−∆r , I
SS
(3) =

βN−rr

β , no matter the initial interior state of the system. As long as the fitness cost is

positive, efficiency at equilibrium will be greater than its economically viable level (w(t) = c
rf
). If the fitness

cost is zero (∆r = 0), then efficiency will be depleted down to economic viability (w(t) = c
rf
). This case is

illustrated in Figure 7 for two different initial values (wi0, I
i
0) with i = A,B.

5 The Social Planner : First Best Outcome

The social planner maximizes social welfare, given by the sum of individual utilities minus the cost of

producing the antibiotic, by choosing the sequence of quantities {Q(t)} optimally over time. Given I(t) at

time t, we can change the control variable to f(t) = Q(t)
I(t) . Omitting the time indices for convenience, the

maximization problem of the social planner is given by :

max
{f(t)}

Z ∞
0

{N
Z θmax

θmin

u(θ)dF (θ)− C(fI)}e−ρtdt (22)
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subject to

dw

dt
= w(1− w)(∆r − rf f) (23)

dI

dt
= I(β(N − I)− rr + w(∆r − rf f)) (24)

0 ≤ f ≤ 1 (25)

0 ≤ w ≤ 1 (26)

0 ≤ I ≤ N (27)

and the initial conditions w(0) = w0 and I(0) = I0. In what follows, we assume a uniform distribution of θ

with supports θmax = 1 and θmin = 0. We thus have dF (θ) = f(θ)dθ = dθ.

When choosing f(t) < 1, it is optimal for the social planner to serve those individuals with the highest

valuation of being in good health, as this will maximize the objective function. Using our earlier derivation

of the indifferent consumer type (see (7)), we have θ̃(p) = P (Q
I ,w)

rfw
=

rfw(1−Q
I )

rfw
= (1− Q

I ) = (1− f) and the

sum of individual utilities can be written as :

N

Z 1

0

u(θ)dθ

= (N − I)
Z 1

0

θdθ + I

Z θ̃(p)

0

π(w)θ dθ + I

Z 1

θ̃(p)

{[π(w) + rfw]θ − P (f, w)} dθ

=
1

2
(N − I) + (1− f)I[ 1

2
π(w) (1− f)] + fI

½
π(w)

µ
1− 1

2
f

¶
+
1

2
rfwf

¾
=

1

2
(N − I) + I

∙
1

2
π(w)

¸
+
1

2
rfwIf

2 (28)

The surplus accruing to the population is thus the sum of three terms. The first term represents the mean

valuation, θ = 1
2 , of the number of healthy individuals given by S = N − I. The second term refers to the

mean valuation for being in good health by those who are infected. Infected individuals recover naturally

with probability π(w). Finally, the third term captures the surplus of being in good health due to antibiotic

treatment. As can be easily verified, it is equal to the Marshallian consumer surplus, measured under the

inverse demand curve and calculated in (10).
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Substituting C(fI) = cfI, the current value Hamiltonian associated to (22) is as follows :

H(.) =
1

2
(N − I) + I(1

2
π(w)) +

1

2
rfwIf

2 − cfI

+µw(1− w)(∆r − rf f) + λI[(β(N − I)− rr + w(∆r − rf f)]. (29)

Notice that the Hamiltonian is convex in f , as ∂2H
∂f2 = rfwI ≥ 0, such that corner solutions may be optimal.

Define the switching function Ω(t) as the difference in the Hamiltonians evaluated at the corners of the

control variable, i.e. at f = 0 and f = 1 :

Ω(t) = H(w, I, f, µ,λ)|f=1 −H(w, I, f, µ,λ)|f=0 (30)

It is optimal to choose

f∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if Ω(t) < 0

f̂(t), if Ω(t) = 0

1, if Ω(t) > 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(31)

where f̂(t) represents a singular solution in the particular case whenH(w, I, f, µ,λ)|f=1 = H(w, I, f, µ,λ)|f=0.

We will turn to the characterization of f̂(t) below.10

Further necessary conditions for an optimal solution in addition to (23) and (24) are :

µ̇− ρµ = −∂H
∂w

=
1

2
∆rI − 1

2
rfIf

2 + (∆r − rf f)[µ(2w − 1)− λI] (32)

λ̇− ρλ = −∂H
∂I

=
1

2
(1− π(w))− 1

2
rfwf

2 + cf + λ[rr − w(∆r − rf f)− β(N − 2I)] (33)

10An ”interior” solution f̂(t) ∈ (0, 1) cannot be optimal, as the Hamiltonian is convex in the control variable f . Only extreme
controls can be optimal. Whenever Ω(t) = 0, the singular control f̂(t) to which we refer here should be reinterpreted as a
probability measure(or a frequency) with which f = 1 is optimal, while (1− f̂(t)) represents the probability with which f = 0
is optimal. Such a control is generally called a chattering control or optimal sliding control. See Lee and Markus (1967) and
Borisov and Zelikin (1994) for further reference.

17



which represent the evolution of the shadow values along the path of f(t) = 0 or f(t) = 1.

For a singular solution to be optimal, we must have over a certain period of time Ω(t) = 0., i.e. the state and

costate variables have to adjust in a way to maintain the switching function equal to zero. The switching

function Ω(t) is given by :

Ω(t) =
1

2
rfwI − cI

+µ|f=1w(1− w)(∆r − rf ) + λ|f=1 I [(β(N − I)− rr) + w(∆r − rf )] (34)

−µ|f=0w(1− w)∆r − λ|f=0 I [(β(N − I)− rr) + w∆r]

At a point of time t, it depends on the current state (w, t) and the value of the costate variables evaluated

at the two extreme controls. If the switching function is equal to 0 over a certain period of time, then its

derivative with respect to time must also equal zero, i.e.

Ω̇(t) =
∂Ω

∂w
ẇ +

∂Ω

∂I
İ +

∂Ω

∂µ0
µ̇0 +

∂Ω

∂µI
µ̇I +

∂Ω

∂λ0
λ̇0 +

∂Ω

∂λI
λ̇I = 0 (35)

where we write µ|f=1 = µI , µ|f=0 = µ0 and respectively λ|f=1 = λI and λ|f=0 = λ0 for convenience.

The last equation can be written as

½
1

2
rfI + (1− 2w)∆r(µI − µ0)− rf (1− 2w)µI + I∆r(λI − λ0)− rfIλI

¾
ẇ(f̂)

+

½
1

2
rfw − c+ [β(N − 2I)− rr + w∆r] (λI − λ0)− rfwλI

¾
İ(f̂)

+w(1− w)∆r(µ̇I − µ̇0)− w(1− w)rf µ̇I

+I [β(N − 2I)− rr + w∆r] (λ̇I − λ̇0)− rfwIλ̇I

= 0

The singular solution f̂(t) is characterized by the former equation as it appears in the terms ẇ(.) and İ(.).
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By replacing for the laws of motion of state variables from equations (23) and (24), we obtain :

f̂ =

∂Ω
∂ww(1− w)∆r + ∂Ω

∂I I(β(N − I)− rr + w∆r) + ∂Ω
∂µ0
µ̇0 +

∂Ω
∂µI
µ̇I +

∂Ω
∂λ0

λ̇0 +
∂Ω
∂λI

λ̇I

rfw
¡
∂Ω
∂w (1− w) + ∂Ω

∂I I
¢ (36)

We would like to characterize the optimal solution further, but for doing this, we must evaluate µ̇0, µ̇I , λ̇0,

and λ̇I . Despite considerable effort to find a tractable analytical solution, we did not achieve this goal. We

thus made use of numerical simulations using the method of reverse shooting, which is explained in detail in

the appendix, in order to characterize the switching function Ω(t) in the (w, I)-space. The main idea of the

reverse shooting approach is that we solve the dynamic system backward for either f(t) = 1 or f(t) = 0 ∀t

for a fine grid of initial states (w0, I0) and then calculate for which states the switching function is equal to

zero.

Our simulations were run for a big variety of parameter values, notably the economic parameters which

are unitary treatment cost c, and the discount rate ρ. The simulation evidence shows for a wide range of

parameter values, that the (w, I)-space can be partitioned into two regions, in the first of which it is optimal

to treat the whole infected population, i.e. f(t) = 1, and in the second of which nobody gets treatment, i.e.

f(t) = 0. The limit between these regions is determined by the level line along which the switching function

is zero, Ω(t) = 0. Consider as an example Figure 8.

We have run numerous simulations, notably with respect to the economic parameters, which are treatment

cost c and discount rate ρ, in order to qualify the location of the zero level line of the switching function.

On the one hand, lowering the treatment cost c or the discount rate ρ tends to push the zero level line

downward, such that in the limit the extreme control f = 1 is optimal in the whole (w, I)-space. In this

case, the system will converge to steady state (1) with wSS(1) = 0 and ISS(1) =
βN−rr

β . Clearly, a decreasing

treatment cost makes the treatment cheaper and thus more infected individuals should be treated in the

social optimum. A decreasing discount rate represents a higher valuation for the future by society. As a

smaller infected population today will infect less individuals tomorrow, and thus lead to a more healthier

population tomorrow - which represents a positive externality to society while the individual is not influenced

in its choice of buying the antibiotic - more people should be treated today.

On the other hand, increasing the treatment cost c tends to push the zero level line of the switching function
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upward as does an increase in the discount rate ρ. In the limit, an increase in the treatment cost results

in the extreme control f = 0 to be optimal in the whole (w, I)-space, as treatment becomes too expensive

with respect to the social benefits of reduced infection. The system would converge to steady state (2) with

wSS(2) = 1 and ISS(2) =
βN−rw

β . Increasing the discount rate up to infinity results in the static optimization

problem. It is easily verified that the static optimization problem, which is still convex, will admit the corner

solution

f∗ = 1, if w > 2
c

rf

f∗ = 0, else.

Depending on the model parameters c and rf , the critical value 2 c
rf
is bigger (or equal) or smaller as one,

implying either a unique extreme control of f = 0 in the whole state space, or a separation of the state space

into two regions of extreme controls. For f = 0 to be optimal in the whole state space, c must be relatively

high compared to the additional recovery rate rf that procures antibiotic treatment. As future generations

of healthy individuals are not valuable in such a case to the society living today, it does not care about the

positive externality effect, that less infected individuals today imply also less infection tomorrow. In term,

the antibiotic should not be applied at all in the social optimum.

In what follows we concentrate on the case in which the state space can be partitionned into two regions of

either extreme controls, our analysis being done with the help of phase diagrams. We treat two interesting

cases, in which the initial state A = (wA0 , I
A
0 ) falls into the region in which f(t) = 1 and the initial state

B = (wB0 , I
B
0 ) falls into the region in which f(t) = 0.

Consider Figure 9. In this case, the initial level of efficiency wA0 is relatively high, as is the initial level of

infection IA0 . The phase diagram shows two different regimes characterized by the two isoclines for infection,

İ|f=0 and İ|f=1. At initial state A, we have f = 1. From there on, the state variables evolute in the south

east direction, crossing the isocline İ|f=1and try to achieve steady state (1) at which efficiency would be

completely depleted, i.e. wSS(1) = 0. By doing so, the optimal path must necessarily reach at some point of

time, say t1, the 0-level line of the switching function, such that Ω(t1) = 0. At t1, dynamic forces of both
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regimes of the extreme controls, i.e. forces out of the 0-level line, prevent the state variables to leave the

0-level line again. Thus, from t1 on, an interior solution is optimal. Numerical simulations have shown us

that the singular solution tends monotonously to ∆rrf
from above. The system thus reaches steady state (3),

at which f̂SS = ∆r
rf
, ISS(3) =

βN−rr

rf
, and the level of efficiency wSS(3) being determined by the intersection of

the I-isocline and the 0-level line of the switching function.11

We present another optimal control path if efficiency is relatively low initially, such that f = 0. Consider

steady state B = (wB0 , I
B
0 ) in Figure 10. Dynamic forces drive the system first in the north west direction,

efficiency increases, while infection decreases. The path crosses now the isocline İ|f=0 from which point of

time infection starts to rise again. The path tends to reach steady state (2), at which we would have wSS(2) = 1,

but the path necessarily reaches the 0-level line of the switching function first, say at some point of time t1.

As before, a singular solution f̂ applies from there on and the system converges to steady state (3), at which

f̂SS = ∆r
rf
, ISS(3) =

βN−rr

rf
, and wSS(3) being determined by the intersection of İ|f=∆r/rf

with the 0-level line of

the switching function. The only difference is that the singular solution now approaches ∆rrf
monotonously

from below.

Figure 10+ shows numerical simulations of the optimal control paths for the two former cases and two more.

6 Comparison Between Social Optimum and Open Access

The regime of open access is not socially optimal. As we have seen, an extreme control is optimal from a

social point of view, at least initially before converging to the singular solution f̂ , exception being made if

the initial state (w0, I0) is located on the 0-level line of the switching function Ω(t) and a singular solution

applies from the beginning on. The system converges to steady state (3) if the state space (w, I) can be

partitioned into two non-empty regions of optimal extreme control. We then have at the steady state :

fSSsp =
∆r

rf

ISSsp =
βN − rr

β

11We remind that the singular solution f̂(t) to which we refer here should be interpreted as a probability measure for the
chattering control, i.e. the probability of interchanging extreme controls. This probability determines the frequency with which
the control path switches around the zero-level-line of the switching function. We are presently working on the formulation of
an auxiliary problem allowing to analyze the chattering control in more detail.
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and the level of efficiency wSSsp is determined by the intersection of the 0-level line of the switching function

and the vertical line passing through ISSsp .

In contrast to this, an extreme control cannot be the result of open access, as this would either make the price

decline down to zero in the case of f = 1 and thus imply zero profits for the antibiotic producers, nor, in the

case of f = 0, as it would then be profitable for any producer to sell at a price above marginal production

cost and to serve the whole market. The fraction of the infected population served by the antibiotic industry

under open access is given by

foa(t) = 1− c

rfw(t)
,

if the antibiotic is economically viable, i.e. rfw(t) > c. We have shown that the system tends to steady state

(3) at which

wSSoa =
c

rf −∆r

⎧⎪⎪⎨⎪⎪⎩
<1 if c < rf −∆r

=1 else

⎫⎪⎪⎬⎪⎪⎭
ISSoa =

βN − rr
β

fSSoa =
∆r

rf
.

Thus, what is decisive for the open access outcome are the production cost c, the level of efficiency w(t) and

the additional recovery rate rf , which determine the valuation of the antibiotic by the infected population,

as well as the fitness cost ∆r. The industry under open access is notably not concerned with the discount

rate ρ, a parameter influencing the socially optimal control path, nor is it concerned with the valuation of

being in good health by the uninfected population, the mean value which is equal to 1
2(N − I) (see equation

(28)).

What the open access and the social optimum have in common is that for a large class of parameter values,

the state variables tend to steady state (3), at which efficiency is renewable and the level of infection is equal

to βN−rr

β . However, the level of efficiency is different in general and even higher in the open access as in the

social optimum. This seems counterintuitive at first sight, as one would think that the open access industry
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overexploits the efficiency of the antibiotic. But as both regimes lead to the same level of infection, we must

also question the speed with which that level is achieved. As the social planner considers the valuation of

being in good heath by those who are uninfected today and in the future, he is interested in reducing the

number of infected individuals more rapidly.

By assessing further the similarities and differences between the open access and the social optimum, we

distinguish between three possible outcomes for which we found evidence. They are discussed in the form of

case studies below.

1) The antibiotic is applied under open access and in the social optimum, however the steady states reached

under both regimes are different.

2) The antibiotic is applied under open access and in the social optimum and the steady states under each

regime are the same, they both tend to steady state (3) and we have wSSoa = w
SS
sp .

3) The antibiotic is not economically viable, but is applied in the social optimum.

Case Study (1). Consider Figure 11 as an example. For this simulation, we have c = 0.18 and ρ = 0.03.

Epidemiological parameters are β = 0.6, rr = 0.3, rw = 0.15, ∆r = 0.15 and rf = 0.4. Economic viability

of the antibiotic is at a level of c
rf
= 0.45, while wSSoa =

c
rf−∆r = 0.72. The level of efficiency reached in the

social optimum is below 0.2. We have shown analytically before that the steady state under open access is

only achieved asymptotically. In our simulations, the steady state was generally reached with an accuracy

of about 10−5 or more after 10000 periods, while the steady state in the social optimum was reached with a

comparable accuracy in only 350 periods, which indicates that the socially optimal steady state is probably

to be achieved in finite time.12 It is clear that the state path must evolute faster in the social optimum

in this case compared to the open access outcome, as it is initially socially optimal to treat every infected

individual, while the antibiotic is not economically viable under open access. More individuals thus benefit

from the antibiotic and thus infection decreases faster over time. This continues to be true, even when the

singular solution applies in the social optimum, as f̂ converges in this particular case to ∆rrf
from above (as

simulations have shown us), while it converges to ∆rrf
from below once it is economically viable under open

access. The steady state is thus more rapidly reached in the social optimum as in the open access : infected

12For the reader who is not familiar with numeric simulations, notably the reverse shooting approach, we want to point out
that the model must be formulated in discrete time in order to be applied numerically. For more details see the appendix.
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individuals get treatment faster in the social optimum reducing infection in the future.

Case Study (2). Consider Figure 12. Here we have wSSoa = w
SS
sp = 0.72, in which case the steady state under

open access is socially optimal, but the path leading to it is not. The parameter values that were used in

the simulation are c = 0.18, ρ = 2.9, the remaining parameters remaining the same as in the previous case

study. As the discount rate increases, the zero level line of the switching function also increases, up to the

point where the steady states in the social optimum and under open access coincide. This is the case at a

discount rate of 290%, which corresponds to a society more impatient, but not as much as the open access

industry.

Case Study (3). Consider Figure 13. Here we have c = rf = 0.4, implying that the viability of the antibiotic

is equal to c
rf
= 1. The discount rate and all other model parameters are again equal to those specified in

case study (1). In this case, the antibiotic is not economically viable under open access, and isn’t neither

applied initially in the social optimum. Open access and socially optimal paths coincide, up to the point of

time where the zero level line of the switching function is reached. From here on, the socially optimal path

follows the zero level line up to convergence to steady state (3). The singular solution that applies converges

to ∆rrf
from below. The open access path leads to steady state (2), which is characterized by a higher level

of infection, but also by an efficiency level equal to one.

7 Future research

We have analyzed the market outcome under open access, and we have shown that it is not optimal from

a societal point of view. We have to further assess the similarities in the steady states under open access

and social optimum, as well as the differences between the two regimes. A more realistic model of antibiotic

exploitation takes into account that, before an antibiotic is sold by a competitive industry, it is protected by

a patent in general and thus generates monopoly power to the exploiting firm. We are presently analyzing

the optimal control problem for the monopolist. Further more, while the monopolist faces an exogenously

given patent duration, the patent protection agency will have to determine the optimal patent duration. Our

intuition is that in the case of antibiotic efficiency, the optimal patent duration may be positive even without

taking into account R&D costs that would have to be recovered by the developing firm. A monopolist may
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better manage the exploitation of the efficiency of the antibiotic as a competitive industry does. This point

clearly merits more attention

8 Appendix

8.1 The Reverse Shooting Approach

The approach of reverse shooting allows us to keep the formulation of the optimal control problem stated

so far, exception being made for the continuous time aspect. The general idea of this numerical approach is

that we start at the ”end” of the problem (i.e. where the steady state has been reached and where we know

the values taken by the state and costate variables in either case with f(t) = 0 or f(t) = 1, ∀t) and solve the

problem backward.13

For the sake of completeness of this section we restate the current value Hamiltonian in terms of the fraction

treated, f(t).

H(.) =
1

2
(N − I) + I(1

2
π(w)) +

1

2
rfwIf

2 − cIf

+µw(1− w)(∆r − rf f) + λI[(β(N − I)− rr) + w(∆r − rf f)]. (37)

The laws of motion for the state and costate variables are

ẇ = w(1− w)(∆r − rf f) (38)

İ = I[β(N − I)− rr + w(∆r − rf f)] (39)

µ̇− ρµ =
1

2
∆rI − 1

2
rfIf

2 + (∆r − rf f)[µ(2w − 1)− λI] (40)

λ̇− ρλ =
1

2
(1− π(w))− 1

2
rfwf

2 + cf + λ[rr − w(∆r − rf f)− β(N − 2I)] (41)

A singular solution is characterized by

f̂ =

∂Ω
∂ww(1− w)∆r + ∂Ω

∂I I(β(N − I)− rr + w∆r) + ∂Ω
∂µ0
µ̇0 +

∂Ω
∂µI
µ̇I +

∂Ω
∂λ0

λ̇0 +
∂Ω
∂λI

λ̇I

rfw
¡
∂Ω
∂w (1− w) + I ∂Ω∂I

¢ (42)

13 Judd (1998) contains an instructing analysis on this approach and many more.
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If the antibiotic is given to the whole infected population, i.e. f(t) = 1, ∀t, the dynamic system will reach

steady state (1), at which wSS = 0, ISS = βN−rr

β . Replacing the steady state values for efficiency and

infection in equation (40), with µ̇|f=1 = 0, and in equation (41), with λ̇|f=1, we obtain the respective steady

state values for the costate variables. They are

µSS |f=1 = ISS(∆r − rf )
h
λSS |f=1 − 1

2

i
ρ− (∆r − rf ) ,

λSS |f=1 =
1
2(rr − 1)− c
βN − rr + ρ

.

If the antibiotic is not given to the infected population over time, i.e. f(t) = 0, ∀t, the dynamic system will

reach steady state (2), at which wSS = 1, ISS = βN−rw

β . The respective steady state values for the costate

variables are

µSS |f=0 = ISS∆r

h
λSS |f=0 − 1

2

i
ρ+∆r

λSS |f=0 =
1
2(rw − 1)

βN − rw + ρ
.

We have now completely specified the steady states if the antibiotic were to be applied with f(t) = 0 or

f(t) = 1, ∀t. Having the laws of motion for the state variables and costate variables at hand (equations (38)

to (41)) we can transform the system into its discrete time approximative system. For any variable x(t) we

have

dx(t)

dt
= lim
∆t→0

x(t+∆t)− x(t)
∆t

.

Applied to our system, we obtain as an approximating system :

w(t+∆t) = w(t) [∆t(1− w(t)) (∆r − rf f(t)) + 1] (43)

I(t+∆t) = I(t) [∆t (β(N − I(t))− rr + w(t) (∆r − rf f(t))) + 1] (44)⎛⎜⎜⎝ µ(t+∆t)

λ(t+∆t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝ a11(t) a12(t)

a21(t) a22(t)

⎞⎟⎟⎠
⎛⎜⎜⎝ µ(t)

λ(t)

⎞⎟⎟⎠+
⎛⎜⎜⎝ bµ(t)

bλ(t)

⎞⎟⎟⎠ , (45)
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with

a11(t) = 1 +∆t (ρ+ (∆r − rf f(t)) (2w(t)− 1))

a12(t) = −∆tI(t) (∆r − rf f(t))

a21(t) = 0

a22(t) = 1 +∆t (ρ+ 2βI(t)− βN + rr − w(t) (∆r − rf f(t)))

bµ(t) =
1

2
∆t
¡
∆rI(t)− rf If(t)2

¢
bλ(t) = ∆t

µ
1

2
(1− π(t))− 1

2
rfw(t)f(t)

2 + cf(t)

¶

In the reverse shooting approach, we calculate the evolution of efficiency and infection from some initial

condition (w0, I0) for a given extreme control f from equations (43) and (44). Knowing the evolution of w

and I, and the steady states for the costate variables if f(t) = 0 and f(t) = 1, ∀t, we can use equation (45)

to calculate backward the evolution of the costate variables. The equation admits a unique solution in the

unknown variables µ(t), λ(t) and particularly µ(0),λ(0).

Figures A1 and A2 show the evolution of the state and costate variables from initial state (w0, I0) with

w0 = 0.5 and I0 = 0.9 for f(t) = 0 and f(t) = 1, ∀t respectively. The parameters are grouped in the

following table :

β = 0.6 ρ = 0.05

rr = 0.3 c = 0.3

rw = 0.15

∆r = 0.15 N = 1

rf = 0.4 ∆t = 1

In Figure A1, steady state (1) is reached, at which wSS = 0 and ISS = 0.5. As efficiency decreases, its

shadow value µ increases. Infection decreases initially below its steady state level, its shadow value λ mirrors

that evolution. In Figure A2, steady state (2) is reached, at which wSS = 1 and ISS = 0.75. No use is made

of the antibiotic and thus the steady state value of infection is higher in steady state (2) compared to steady
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state (1). The shadow value of efficiency is negative although efficiency represents a good to society. An

interpretation for this is that as the antibiotic is never used in this case to fight the infection, and as there

is no other use for the antibiotic in our model, its efficiency has a negative intrinsic value : it would actually

cost nothing to decrease the resource.

We can now turn to the algorithm of reverse shooting itself. It can be stated as follows :

Algorithm 1 Reverse Shooting

1) From the initial condition (w0, I0), calculate the evolution of efficiency and infection for the two cases

with f(t) = 0 and f(t) = 1, ∀t up to convergence to the respective steady states (1) and (2).

2) Use the laws of motion for the costate variables µ and λ, their respective final values µSS and λSS, as

well as the series of w and I from step (1) in order to calculate the evolution of the costate variables backward.

3) At (w0, I0), evaluate the switching function Ω(t) and determine the optimal control f∗. If Ω(t) is zero, we

calculate the singular solution f̂(t) from a time discrete version of equation (42).

4) Calculate w(1), I(1) using f∗ from step (3) and start from step (1).

5) Repeat steps (1) to (4) in order to generate a time series of necessary length to reach steady state (3).
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Figure 4: Convergence to Equilibrium 
 

w 

c/rf 

SSw )3(  

SSI )3(  N 

∞=
=

t
I 0&  

I 

f

oa

r
rf ∆

>  

f

oa

r
rf ∆

<  

I II 

III IV 

0=w&  

f

oa

r
rfw ∆

== 0&  

 

1 



 35

Figure 5.a: 
f

oa

r
rf ∆

>   

 
 

 
 
  
 
 
 

w 

1 

c/rf 

c/( rf -∆r) 

    w(0) 

(βN-rr)/ β N I(0)          

0
0

=
=

t
I&  

1
0

tt
I

=
=&  

∞=
=

t
I 0&  

I 

f

oa

r
rf ∆

>  

f

oa

r
rf ∆

<  

f

oa

r
rf ∆

=  

I(t1) 

w(t1) 

∞<< 10 t  



 36

 
 

Figure 5.b: 
f

oa

r
rf ∆

>  

 

0
0

=
=

t
I&

 
1

0
tt

I
=

=&  
∞=

=
t

I 0&  
2

0
tt

I
=

=&  

SSI )3(  

SSw )3(  

w 

I 
N 0I  

0w  

1 

0 

fr
c  

)( 1tI  

)( 1tw  

f

oa

r
rf ∆

<  

f

oa

r
rf ∆

>  

f

oa

r
rf ∆

=  

)( 2tI  

)( 2tw  

∞<<< 210 tt  



 37

 
 
 
 

Figure 6.a: 
f

oa

r
rf ∆

<  

 

0
0

=
=

t
I&

 1
0

tt
I

=
=&

 ∞=
=

t
I 0&  

SSI )3(

SSw )3(  

w 

I 
N 0I  

0w  

1 

0 
fr
c

 

f

oa

r
rf ∆

<
 

f

oa

r
rf ∆

>
 

f

oa

r
rf ∆

=
 

∞<<< 210 tt  

2
0

tt
I

=
=&  



 38

Figure 6.b: 
f

oa

r
rf ∆

<  

 

 
 

0
0

=
=

t
I&

 1
0

tt
I

=
=&

 ∞=
=

t
I 0&  

SSI )3(

w 

I 
N 0I  

0w  

1 

0 
fr
c

 

f

oa

r
rf ∆

<
 

f

oa

r
rf ∆

>
 

f

oa

r
rf ∆

=
 

)( 1tI  

∞<< 10 t  

SSw )3(  

w(t1) 



 39
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Figure 8 
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Figure 10: Optimal Path with ),( 00
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Figure 11 
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Figure 12 
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Figure 13 
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Figure A1 
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Figure 10+  

 


