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one another. One is the responsiveness of labor supply to redistributive taxes. Another isthe social welfare function that determines the equity effects of redistribution. A third isthe shape of the skill distribution (Diamond, 1998; Saez, 2001). And, the manner in whichthese influences interact is affected by the incentive constraints that limit the feasibilityof redistribution. This prevents one from analytically deriving the entire optimal taxschedule.In this paper, we exploit the fact that one of these influences can be virtually suppressedif we take an extreme form of the social welfare function, the maxi-min social welfarefunction emphasized by Rawls (1971).1 In the context of optimal income tax theory, themaxi-min social welfare function becomes simply the utility of the least-skilled individual,since the incentive constraints ensure that utility is non-decreasing in skills. This effectivelyshuts down one of the three influences mentioned above, and we are left with two mainsources of influence on the optimal tax structure: the variability of labor and the shape ofthe skill distribution. This turns out to simplify the optimal tax problem considerably, andin many cases to yield explicit solutions and characterizations of the optimal tax structure.The structure of the optimal income tax function can take interesting forms that contrastboth with those observed in the real world, and those obtained for social welfare functionswith finite degrees of aversion to inequality, especially Diamond (1998).The analysis of the optimal income tax under a maxi-min objective function is notnew (Atkinson, 1975; Phelps, 1973; Kanbur and Tuomala, 1994; Piketty, 1997; d’Autume,2001; Salanié, 2003). Our approach can be seen as synthesizing the maxi-min approach andextending it in some interesting directions. When preferences are additive in consumptionand leisure, marginal tax rates are decreasing over the entire distribution of skills underreasonable assumptions, unlike in the case with general social welfare functions. Moreover,the tax function itself is strictly concave with income and average tax rates are generallysingle-peaked. We also show in particular that when quasilinear utility functions applyin either consumption or leisure, so that income effects are suppressed, the optimal taxanalysis and the results obtained from it turn out to be quite simple. In these cases, thedistribution of skills is a key determinant of the tax schedule, and has the same qualitativeinfluence for either case of quasilinearity. The shape of the tax structure can depend uponwhether the skill distribution is bounded at the top.1Following Okun’s (1975) interpretation of Rawls, when all the weight is placed on the most needy,the optimal tax literature uses the term ‘Rawlsian objective’. Obviously, this interpretation does notadequately reflect the richness of the Theory of Justice of Rawls (1971), but it is the common practice ineconomics. 2



In the following section, we outline the basic features of the model. Section 3 considersthe properties of the optimal tax function with general additive preferences. We presentthe optimal tax formula in terms of the elasticity of labor supply, the pattern of marginalutilities of consumption, and the shape of the skill distribution. We derive sufficientconditions for decreasing marginal tax rates in skill and a single-peaked average tax profilein income. We pay particular attention to the validity of the so-called first-order approachand derive sufficient conditions for this to be valid with general additive preferences.In Section 4, we then turn to quasilinear-in-leisure preferences, which have an obviouspedagogical value since these preferences ease the solution considerably. Qualitative resultsfor some specific skill distributions are derived. Section 5 studies the tax structure withquasilinear-in-consumption preferences. When the elasticity of labor supply is constant,the optimal tax patterns are similar for both types of quasilinear preferences. We alsoallow for a variable elasticity of labor supply using a logarithmic utility of leisure, as inDiamond (1998). In our analysis, bunching can only occur at the bottom when the non-negativity constraint that must be imposed on the household income is binding. Section 6then analyzes the consequences for the tax structure of this binding constraint. The finalsection summarizes.2 The modelAssume that all households have the same additively separable utility function:u(x, ℓ) = v(x)− h(ℓ) (1)where x is consumption and ℓ is labor (so 1 − ℓ is leisure), with v′ > 0 ≥ v′′, h′ > 0and h′′ ≥ 0, with either v′′ < 0 or h′′ > 0. Such preferences satisfy the single-crossing ormonotonicity property that is important for optimal income tax analysis. Households differonly in skills, which correspond with their wage rates given that aggregate production islinear in labor. These wage rates w are distributed according to the distribution functionF (w) for w ∈ W = [w,w], where 0 < w < w ≤ ∞. The corresponding density function,f(w) = F ′(w), is assumed to be differentiable and strictly positive for all w ∈ W . It isassumed that the distribution is single-peaked, with a mode at wm.Households obtain all their income from wages, and before-tax income is denoted byy ≡ wℓ. Let x(w), ℓ(w) and y (w) be consumption, labor supply and income for a householdwith skill w. The government can observe incomes but not wage rates or amounts of labor3



supplied, so it bases its tax scheme on total income. Then, the budget constraint for thishousehold is: x(w) = y(w)− T (y(w)) (2)where T (y (w)) symbolizes the income tax imposed on type-w households. The householdmaximizes (1) subject to (2), yielding the first-order condition:h′(ℓ(w))wv′(x(w)) = 1− T ′(y(w)) (3)If we use the definition of income to rewrite the utility function as v(x) − h(y/w), theleft-hand side can be interpreted as the marginal rate of substitution between income yand consumption x. This is chosen to equal one minus the marginal income tax rate.For later use, it is convenient to note that, from (3), the compensated elasticity of laborsupply, ec(wn), satisfiesec(wn) = wnℓ dℓdwn ∣∣∣∣u = h′(ℓ)(h′′(ℓ)−w2nv′′(x)) ℓ > 0 (4)and the uncompensated elasticity of labor supply, eu(wn) satisfieseu(wn) = wnℓ dℓdwn = h′(ℓ) + v′′(x)w2nℓ(h′′(ℓ)− w2nv′′(x))ℓ (5)where wn ≡ w(1− T ′(y(w))) is the after-tax wage rate.Throughout the paper, we assume that the objective function of the government ismaxi-min, so the government is only concerned about the welfare of the least well-offhouseholds. Given the information assumptions we are making, the worst-off will bethose at the bottom of the skill distribution whose wage is w. The determination of theoptimal income tax structure can be formulated as a mechanism design problem. Thegovernment chooses the tax schedule T (y (w)) or, equivalently, the consumption-incomebundle intended for each household {(x(w), y(w), w ∈W}, to maximize the welfare of theleast well-off households, subject to three sorts of constraints.The first is the government budget constraint, which takes the form:∫ ww [y(w)− x(w)]f(w)dw ≥ R (6)where R is an exogenous revenue requirement. This constraint must be binding at theoptimum since u is increasing in x.The second is the set of incentive-compatibility constraints. These require that ahousehold of type w choose the consumption-income bundle intended for it, that is,v (x (w))− h(y(w)w ) ≥ v (x (w′))− h(y(w′)w ) ∀w,w′ ∈W (7)4



Ensuring these self-selection constraints is equivalent to reformulating (7) as a minimiza-tion problem as follows. Define the value function of utility for a type-w household by:u(w) ≡ v (x (w))− h(y(w)w ) (8)For a type w′ household, (7) and (8) give:u(w′) = v (x (w′))− h(y(w′)w′ ) ≥ v (x (w))− h(y(w)w′ )Therefore, combining the last two expressions for w and w′:0 = u(w)− v (x (w)) + h(y(w)w ) ≤ u(w′)− v (x (w)) + h(y(w)w′ )This implies that w′ minimizes u(w′)− v (x (w)) +h (y(w)/w′) at w = w′. Evaluating thefirst-order condition at w = w′, we obtain.u(w) = h′(.)y(w)w2 = h′(.)ℓ(w)w ∀w (9)This is the set of first-order incentive-compatibility (FOIC) conditions. The first-orderapproach uses only these FOIC conditions. Since these are only necessary conditions,their solution may not indicate a minimum. It may be necessary to adopt a second-orderapproach and include the second-order conditions in the government’s problem.The second-order conditions for the incentive compatibility (SOIC) constraint to besatisfied is found using the second derivative of u(w′)− u(x(w), y(w)/w′) with respect tow′ evaluated at w = w′ : ..u(w) + 2h′(.)y(w)w3 ≥ 0 ∀w (10)These are the SOIC conditions, and can be rewritten as follows. Differentiate the FOICconditions (9) with respect to w...u(w) + 2h′(.)y(w)w3 − h′(.) .y(w)w2 − h′′(.)y(w)w3 .y(w) = 0which gives, by using (10) (h′(.)w2 + h′′(.)y(w)w3 ) .y(w) ≥ 0which implies .y(w) ≥ 0. Moreover differentiating (8) with respect to w and using (9), weobtain: v′(.) .x(w)− h′(.) .y(w)w = 05



Therefore, .y(w) ≥ 0 or .x(w) ≥ 0 are equivalent ways to write the SOIC conditions. Notethat if the SOIC constraints are slack ( .y(w) > 0), the first-order approach is appropriate.Where they are binding, we have .x(w) = .y(w) = 0, so there is bunching of households ofdifferent skills.The third constraint (highlighted in Boadway, Cuff and Marchand, 2000) requires thatlabor supply and therefore before-tax income be non-negative (y(w) ≥ 0, w ∈ W ).2 Fornow, we neglect the non-negativity constraint on income and assume it to be satisfied. Weinvestigate the consequences of this constraint being binding in Section 6.The solution to the government’s maxi-min problem will give the highest level of u(w)that can be achieved given R and the incentive constraints, where u(w) = v(x (w)) −h(ℓ (w)). Let the solution to this problem be denoted u. This solution can also be obtainedfrom an equivalent revenue-maximizing problem which can be formulated as follows. Takeu as given and consider tax profiles that will generate this level of utility for the worst-offhouseholds, given the incentive conditions. It is apparent that u can be supported by alarge number of tax profiles such that tax revenues are no greater than R, that is,∫ ww [y(w)− x(w)]f(w)dw ≤ RAs long as the incentive constraints are satisfied for all w, we know from the above problemthat generating the utility level u requires that the tax revenue generated cannot exceedR, so the above inequality must be satisfied. In fact, if we maximize the amount of taxrevenue that will yield utility u for the worst-off households, that level of revenue will beprecisely R. Therefore, maximizing tax revenue subject to u (w) � u and the incentiveconditions is an equivalent problem to the one of maximizing u (w) subject to tax revenuesbeing at least equal to R and the incentive conditions. The purpose of drawing attentionto these two equivalent approaches to solving the maxi-min optimal income tax problemis to relate our approach to the revenue-maximizing approach used by other authors (e.g.,d’Autume, 2001; Piketty, 1997).3 The general additive caseWe proceed by first studying the optimal income tax problem for the case where house-hold utilities take the general additive form. Unambiguous qualitative results in this2A maximum labor supply constraint could also be required, although we ignore this requirement inthis paper. By the same token, we should impose the requirement that consumption be non-negative(x (w) ≥ 0). However, given our maxi-min objective and the fact that x (w) is increasing in w, thisconstraint will not be binding in our analysis. 6



case are somewhat limited, though the sources of influences at work can be identified.In the next section, we turn to two quasilinear forms of (1) that have been prominentin the literature–quasilinear-in-leisure and quasilinear-in-consumption–where somewhatsharper results are obtained.For expositional purposes, we follow the first-order approach and ignore the SOICconditions. Later we can verify whether the latter are satisfied for the maxi-min case.In the government’s maxi-min problem, to deal with the fact that the objective functionis simply u(w), we transform the objective function to make it amenable to the controltheory approach. Let I (w) be an indicator function such that I (w) = 1 if w = w, andI (w) = 0 otherwise. Furthermore, from (1), we have that u (w) = v(x (w)) − h(ℓ (w)),which implies that u (w), x (w), and ℓ (w) are not independent. We can therefore treatx (w) as a function of the other two and write it as x (w,u (w) , ℓ (w)), where x is increasingin all three arguments. In particular, by differentiating the utility function, we obtain:∂x(w,u(w), ℓ(w))∂ℓ = h′(ℓ (w))v′(x (w)) , ∂x(w,u(w), ℓ(w))∂u = 1v′(x (w))This allows us to suppress x(w) from the government problem.The government solves for the feasible tax structure that maximizes the utility of theleast well-off households subject to the budget constraint (6) and the FOIC conditions (9):Maxu(w),ℓ(w) ∫ ww u(w)I (w)dw (11)s.t. ∫ ww [wℓ(w)− x(w,u(w), ℓ(w))]f(w)dw = R and .u(w) = −ℓ(w)h′(ℓ(w))wThe equivalent problem consists in maximizing tax revenue subject to a boundary condi-tion on the utility level of the least-well off and to the FOIC constraints (9):Maxu(w),ℓ(w) ∫ ww [wℓ(w)− x(w, u(w), ℓ(w))]f(w)dw (12)s.t. u(w) = u and .u(w) = −ℓ(w)h′(ℓ(w))wFor both problems, Appendix 1 describes the variational techniques used and derivesthe necessary conditions for a maximum. The first-order conditions characterizing theoptimum nonlinear marginal tax in each case can be written as:T ′(y(w))1− T ′(y(w)) = [1 + h′′(ℓ(w))ℓh′(ℓ(w)) ] 1wf(w)v′(x(w))∫ ww f (t)v′ (x (t))dt ∀w ∈W (13)Note that this formula for optimal marginal tax rates does not depend on either u or Rexplicitly, although of course the levels of tax liabilities do.7



Formula (13) allows us to obtain some simple properties with a maxi-min criterionand additive preferences. First, note that the right-hand side is always nonnegative, soT ′(y(w)) ≥ 0. Second, at the bottom of the skill distribution where w = w, the optimalmarginal tax rate is strictly positive.3 This maxi-min result is in sharp contrast with thestandard result of zero marginal tax rate at the bottom when using as an objective a socialwelfare function involving all households and assuming no bunching at the bottom (Seade,1977; Myles, 1995). Third, the marginal tax rate at the top is zero (T ′ (y (w)) = 0) witha bounded skill distribution.4 The zero marginal tax rate at the top is a standard resultwith a bounded skill distribution (see Sadka, 1976; Seade, 1977): raising the marginal taxrate at the top above zero is suboptimal because it would distort the labor supply decisionof the highest earner but would raise no revenue. With an unbounded distribution, thisintuition may not apply since in this case, there is always a household with a higher wagelevel than the one at which we calculate the optimal marginal tax rate. Even so, theasymptotic tax rate tends to zero if [1+ℓh′′(ℓ)/h′(ℓ)] and the hazard rate (1−F (w))/f(w)are constant.5To characterize the pattern of marginal tax rates for skills in the interior, it is useful tounderstand the intuition behind the multiplicative components of (13). The first compo-nent, [1 + ℓh′′(ℓ)/h′(ℓ)], is a measure of the elasticity of labor supply and as such reflectsan efficiency effect. Using (4) and (5), this factor is equivalent to [1 + eu(wn)]/ec(wn). Apriori, it is not clear how this term varies with skills. Following Diamond (1998), we shalloften assume that this term is constant.3There will still be a positive tax rate at the bottom if there is bunching, either due to an intervalof low-skilled persons who are not working (Seade, 1977) or due to the violation of SOIC constraints(Guesnerie and Laffont, 1984 and Ebert, 1992).4Proof: Multiplying and dividing (13) by (1− F (w)), we obtain:T ′(y(w))1− T ′(y(w)) = [1 + h′′(ℓ(w))ℓh′(ℓ(w)) ] 1− F (w)wf(w) v′(x(w))1− F(w) ∫ ww f (t)v′ (x (t))dt ∀w ∈WThe term [v′(x(w)) ∫ ww f(t)/v′ (x(t))dt]/ [1− F (w)] is asymptotically finite, as can be shown usingl’Hôpital’s rule:limw→w v′(x(w))1− F (w) ∫ ww f (t)v′ (x (t))dt = limw→w v′(x(w)) limw→w ∫ ww f(t)/v′ (x (t))dt1− F(w) → 1At the top, we have [1−F(w)]/[wf(w)] = 0 (which is obvious if f(w) �= 0 and remains valid if f(w) = 0, ascan be shown using l’Hôpital’s rule). Therefore, since [1 + ℓh′′(ℓ)/h′(ℓ)] is always positive, the asymptoticmarginal tax rate is zero with bounded skill distributions.5To see this, let us denote H the constant hazard rate (1− F (w))/f(w). Therefore limw→∞ 1−F (w)wf(w) =limw→∞H/w → 0. From the first equation in the previous footnote and the asymptotically finite term[v′(x(w)) ∫ ww f(t)/v′ (x(t)) dt] / [1− F (w)], T ′ tends to zero when [1 + ℓh′′(ℓ)/h′(ℓ)] and the hazard rateare constant. 8



The second term, 1/[wf(w)], can be called the density effect. It indicates that theoptimal marginal tax rate is lower the higher are aggregate skills wf(w) at skill level w.The loss of revenue from increasing the marginal tax rate is higher, the higher is wf(w).With single-peaked skill distributions, this term always decreases below the mode of thedistribution. Above the mode, it will either increase or decrease depending on how rapidlyf (w) falls with w.The final term in (13), v′(x(w)) ∫ ww f(t)/v′ (x(t)) dt, is the product of the marginalutility of consumption and the gain in tax revenue from decreasing the utility of everyoneabove w by one unit. Let us call it the global revenue effect. The intuition of this effectis as follows. Suppose we reduce the utility of everyone above w by a marginal unit (sothat the FOIC constraints are still satisfied in that range). The gain in increased revenueis 1/v′(x (w)) per person, while there is no loss of social welfare since the utility of thosewith w > w does not count with a maxi-min criterion. Thus, the integral represents thenet effect of a marginal reduction in u above w, and depends on the number of peopleabove w. The entire term v′(x(w)) ∫ ww f(t)/v′ (x(t))dt is declining with w since we assumethat the v(x) function is concave and since the integral term decreases in w.From the above, we can infer that when h(ℓ) takes the constant elasticity form sothe first term in (13) is constant, the marginal tax rate always decreases in w below themode ( .T ′ < 0) with single-peaked skill distributions. After the mode of w, the shape ofthe optimal tax profile will depend on the relative influence of the density effect, whichis ambiguous, and the global revenue effect, which is decreasing. A sufficient, though notnecessary, condition for decreasing T ′ over the entire skill distribution is that aggregateskills wf(w) are non-decreasing with the productivity level.So far, our analysis has been conducted as if the first-order approach were valid. Thiswill be the case as long as (13) yields a solution for T ′(y(w)) such that x(w) (or y(w)) iseverywhere increasing in w. To derive a sufficient condition for the optimal marginal taxprofile to satisfy the SOIC conditions, rewrite (3) asv′(x(w))h′ (y(w)/w) = 1w(1− T ′(y(w))) (14)Given that v′ < 0, h′′ ≥ 0, the lefthand side of (14) will be decreasing if and only if.x(w) > 0 (and therefore, .y(w) > 0). Moreover, the righthand side will be decreasing inw if and only if w(1 − T ′(y(w)) is increasing in w. Therefore, the latter is a necessaryand sufficient condition for the SOIC conditions to be satisfied ( .x(w) > 0). Thus, a non-increasing marginal tax rate ( .T ′(y(w)) ≤ 0) is sufficient for the SOIC conditions to be9



satisfied. An implication of this is that since T ′ decreases in w below the mode whenh(ℓ) is constant elasticity, the SOIC conditions will be satisfied there and there will be nobunching at the bottom on that account.So far, and as is typical in the literature, we have focused on how the marginal taxrate changes with the wage rate w, and not with income y. Since the marginal tax rate isalways non-negative, T ′(y(w)) ≥ 0, total tax liabilities rise with y. To determine how themarginal tax rate varies with income, note thatdT ′(y(w))dw = T ′′(y(w)) .y(w) (15)where T ′′(y(w)) is the second derivative of the total tax function T (y) with respect to y.As long as the SOIC condition .y(w) > 0 is satisfied for any w, T ′′ (y (w)) takes the samesign as dT ′(y(w))/dw. Therefore, where T ′ (y (w)) declines in w, the optimal tax functionT (y(w)) is increasing and strictly concave in y.This last result has implications for the pattern of average tax rates, a dimension thathas drawn little attention. Assume that in the maxi-min optimum, the least well-off receivea transfer, that is, T (y(w)) < 0. (This requires the government revenue requirement nottoo large.) Therefore, the average tax rate T (y)/y will be single-peaked in income if T ′(y)is decreasing and T ′(y)→ 0. This is illustrated in Figure 1, where T (y) is strictly concaveand T ′(y) → 0. The average tax rate (that is, the slope of dashed lines from the origin)first increases up to income y2, and then decreases.INSERT FIGURE 1 HERETo summarize this section:Proposition 1: Assuming a maxi-min criterion and general additive preferences, theoptimal marginal tax profile has the following characteristics:(i) At the bottom of the skill distribution, the optimal marginal tax rate is strictly positive(even without bunching).(ii) The optimal marginal tax rate at the top is zero with a bounded distribution. Withunbounded distributions, when the hazard rate and the elasticity of labor are con-stant, the marginal asymptotic tax rate equals zero.(iii) If the elasticity of labor is constant, the optimal marginal tax rate is decreasingbelow the modal skill with a single-peaked skill distribution.(iv) If the elasticity of labor is constant, aggregate skills wf(w) non-decreasing with theproductivity level is a sufficient condition for a decreasing T ′(.) over the entire skilldistribution. 10



(v) A non-increasing T ′(.) is sufficient for satisfying the SOIC conditions. Below themode, the SOIC conditions are always satisfied with a constant elasticity of laborsupply.(vi) T ′(.) decreasing in skill is necessary and sufficient for T (y) to be increasing andstrictly concave in income. The average tax rate will then be single-peaked in incomeif T (y) < 0 and T ′(y)→ 0.Note for future reference that (13) can be written in a way that is directly analogousto Diamond (1998)’s formula for optimal marginal tax rates under a general social welfarefunction: T ′(y(w))1− T ′(y(w)) = A(w)B(w)C(w) ∀w ∈W (16)whereA(w) = [1 + h′′(ℓ(w))ℓh′(ℓ(w)) ] , B(w) = v′(x(w))1− F(w) ∫ ww f (t)v′ (x (t))dt and C (w) = 1−F (w)wf (w)This way of writing the factors will be useful in the next sections.4 Quasilinear-in-leisure preferencesIn this section, we assume that preferences are quasilinear in leisure, so h(ℓ) = ℓ and v(x)is increasing and strictly concave. This setting is the same as Lollivier and Rochet (1983),Weymark (1986a, 1986b, 1987), Ebert (1992) and Boadway, Cuff and Marchand (2000).Utility can then be written u(x, y/w) = v(x) − y/w. Such preferences are characterizedby the absence of income effects in the choice of consumption. Furthermore, A(w) =1 + ℓh′′ (ℓ) /h′ (ℓ) = 1 in this case, so another of the three influences on the optimal taxstructure is shut down. We begins by deriving general properties for the optimal taxstructure, and then consider the tax structure for specific skill distributions.4.1 The optimal tax structureThe optimal tax structure can be obtained as a special case of the general additive one.The optimal tax formula (13) becomes:T ′(y)1− T ′(y) = v′(x(w))wf(w) ∫ ww f (t)v′ (x (t))dt (17)This can be simplified considerably as follows. As shown in Appendix 2, from the first-order conditions for the optimal tax problem, we obtain:∫ ww f(t)v′ (x (t))dt = w(1−F (w)) (18)11



Then substituting (18), the first-order condition for the household (3) and h′(ℓ) = 1 into(17), and using the above definition of C(w), we get:T ′(y(w)) = 1− F(w)wf(w) = C(w) (19)Thus, the structure of optimal marginal tax rates depends only on the properties of thedistribution function for skills as in Boadway et al (2000).6Since, as we showed above, a non-increasing T ′(y(w)) with w is a sufficient condition forsatisfying the SOIC conditions, .C(w) ≤ 0 implies that the SOIC conditions are satisfied.Therefore, the properties of the skill distribution may be sufficient to determine if theSOIC conditions are satisfied.With quasilinear-in-leisure preferences, it is useful for pedagogical purposes to note thatthe optimal tax schedule can be derived from a simple Lagrangian optimization problem.This is shown in Appendix 2 where the following first-order conditions are derived:λ = 1w (20)and v′(x(w)) = f(w)wf(w) +F (w)− 1 (21)where λ is the multiplier associated with the government budget constraint. The first con-dition indicates that the marginal cost of public funds depends only on the level of skill ofthe lowest skilled person. Intuitively, with quasilinear-in-leisure preferences, an incrementin government revenue requirements involves all households supplying an additional unitof labor, that is, dy (w) /dR = 1 ∀w ∈ W . This is shown in Appendix 2. The utility costto this person–who is the only one whose utility counts–from supplying an additionalunit of income is simply 1/w. The second condition, (21), yields the optimal tax rate,(19), after substituting in the first-order conditions for the household, (3).4.2 Results for specific distribution functionsMost simulations use a log-normal distribution which matches roughly the single-modedempirical income distribution (Aitchison and Brown, 1957) but has also an unrealistic6Some intuition can be given for this optimal marginal tax formula, following Boone and Bovenberg(2006). Rewrite (19) as follows: T ′(y(w))wf(w) = 1 − F (w). The left-hand side is a measure of themarginal distortion associated with an increment of labor supplied by a type-w household. Thus, itmeasures the efficiency gain from a compensated increase in ℓ (w), where the compensation involves a unitof lump-sum income. The right-hand side reflects the fact that if income is increased by one unit for thisperson, it must be increased by a unit for all persons above w in the skill distribution in order for theincentive constraint to continue to be satisfied. This has a cost of 1− F (w).12



thin upper tail. It has been argued that the Pareto distribution fits the empirical incomedistribution at high income levels reasonably well (Feenberg and Poterba, 1993 and Saez,20017). However, these simulations rely on the assumption that the skill distribution takesthe same shape as the income distribution which is a strong an assumption. Therefore,we use skill distributions which encompass the traditionally used ones and the Weibulldistribution which is flexible enough to match a wide variety of decreasing and single-peaked skill distributions and which also allows for a thicker upper tail than the log-normal.Furthermore, it seems realistic to assume these distributions have an upper bound. Thedistributions we then consider include the Pareto, the Weibull and the log-normal, bothin their truncated and untruncated forms.Since C (w) is always declining below the modal skill level wm, so are marginal taxrates. We therefore focus especially on how the various distributions apply above wm.For those distributions whose densities are decreasing everywhere (e.g. the Pareto), wesuppose the distribution applies above wm.Pareto distributionSome well-known results depend on the distribution being Pareto and untruncated (Dia-mond, 1998 and Salanié, 2003) above the modal skill level. The density f (w) of an un-truncated Pareto is proportional to 1/w1+a for a > 0. Therefore, from (19), C(w) = 1/a,8so the marginal tax rate is constant (and strictly positive) where the Pareto distributionapplies. Thus, the optimal income tax over the entire skill distribution has a so-calledhockey-stick profile in skills: it has a constant marginal tax rate beyond the mode (analo-gous to a linear progressive tax) where the Pareto distribution applies, and a monotonicallydeclining marginal tax rate before that.9Intuitively, this result is due to the wide tail of the Pareto distribution which gives anincentive to have high marginal tax rates at high levels of productivity since these raise alot of additional revenue. The top rate depends negatively of the thinness of the top tail7In Saez (2001), the skill distribution used is calibrated such that given the chosen utility functionsand a flat tax (reproducing approximately the real US tax schedule), the resulting distribution replicatesthe empirical earnings distribution in the U.S. This empirical earnings distribution seems remarkably wellapproximated at the upper end by a Pareto earnings distribution. (Pareto already noted this almost onecentury ago.) As the tax profile is roughly linear in the U.S., a Pareto distribution is then also a goodapproximation for skills at the upper end.8With quasilinear-in-leisure preferences, a ≥ 1 is assumed to ensure that marginal tax rates lie below 1so there is no bunching at the top due to a violation of the SOIC conditions.9These global results assume that the Pareto distribution applies for all skill levels beyond the mode.It may be more realistic to suppose that it applies only begining at some skill level ŵ beyond the mode,as in Diamond (1998). It is possible that in the range between the mode and ŵ the marginal tax rate notbe declining. 13



distribution. (With Pareto distributions, the higher the Pareto parameter a, the thinneris the tail of the distribution.)Since T ′(.) decreases below wm and T ′(.) is constant where the Pareto distributionapplies, we infer from (15) that the tax function is concave in income. It is increasingbelow the income corresponding to wm and linear above that. From Proposition 1(v) andT ′(.) non-increasing, the SOIC conditions are satisfied. Therefore, there is no bunchingon this account.Since the marginal tax rate as w → w is larger than zero, the sufficient conditionsof Proposition 1(vi) are not satisfied, so we cannot be sure that the average tax rate issingle-peaked: it may be increasing throughout. However, in the (unrealistic) case wherethe whole distribution of skill is an untruncated Pareto, the tax profile is linear over thewhole distribution of y. In Figure 1, if the tax function were increasing and linear in y,it can easily be seen that the average tax rate is everywhere increasing if T (y) < 0 (cf.Hindriks et al, 2006).A truncated Pareto distribution (w < ∞) applying beyond the mode seems morerealistic. The density is then given by f(w) = awaw−a−1[1− (w/w)a]−1, so:C(w) = 1a [1− (ww)a] (22)where .C(w) = −awa−1/wa < 0. The marginal tax rate therefore now (monotonically)decreases with w both before and beyond the mode. In addition, T ′(y(w)) is strictlyconcave in w when a > 1 and strictly convex when a < 1. The SOIC conditions areagain always satisfied. Moreover, the marginal tax rate is zero at w = w < ∞, whichconfirms the standard result that the optimal marginal tax rate is zero at the top with abounded skill distribution. Therefore, since the tax function is strictly concave in income,(15) implies that the optimal average tax rate has a single-peaked pattern if T (y) < 0(Proposition 1(vi)).Weibull and log-normal distributionsWith the untruncated Weibull distribution, the density isf(w) = βη (wη )β−1 e−(w/η)βwhere β > 0 is the shape parameter and η > 0 the scale parameter.10With an untruncated10Varying the shape β of a Weibull density drastically modifies the density profile. For 0 < β < 1,f(w) decreases and is convex as w increases. For β = 1, it becomes the exponential distribution, as aspecial case. For β > 1, the density assumes wear-out type shapes and f(w) decreases after the mode. For14



log-normal distribution, the density isf(w) = e−(lnw−µ)2/(2σ2)/(σw√2π)where µ is the mean and σ2 the variance. With an untruncated Weibull distribution,.C(w) < 0, while with a log-normal distribution, .C(w) < 0 if:11e(lnw−µ)2/(2σ2)(1− erf ( lnw − µσ√2 )) (lnw − µ) < 0.8σ (23)Therefore, T ′(y(w)) is necessarily decreasing over the entire Weibull and log-normal distri-butions assuming (23) is satisfied. From Proposition 1(v), this also implies that the SOICconditions are always satisfied so there can be no bunching on that account. As well,T ′(y(w)) tends to zero as w increases, so the income tax function is strictly concave inincome. The sufficient conditions of Proposition 1 (vi) being satisfied, the optimal averagetax rate has a single-peaked pattern.Suppose now that the Weibull and log-normal distributions are truncated at w < ∞.We derive .C(w) < 0 with a truncated Weibull distribution (with a mode larger thanthe scale parameter which is usually standardized to 1) and with a truncated log-normaldistribution if:12 e(lnw−µ)2/(2σ2) (g (w)− g(w)) (lnw − µ) < 0.8σ (24)β = 2, it becomes the Rayleigh distribution as a special case. For β < 2.6, f(w) is positively skewed (hasa right tail). For 2.6 < β < 3.7, its coefficient of skewness approaches zero (no tail), consequently, it mayapproximate the normal density. And for β > 3.7, it is negatively skewed (left tail).11With a Weibull distribution, we have C(w) = [1/β(w/η)β ], .C(w) = −w−β−1ηβ < 0 and ..C(w) =(β + 1)w−β−2ηβ > 0. Therefore, C(w) is decreasing and convex in w. With a log-normal, we haveC(w) = (σ√2π/2) [1− erf(E(w))] e(lnw−µ)2/(2σ2)where erf(.) is the error function (encountered in integrating the normal distribution and defined by,erf(x) = 2√π ∫ x0 e−t2dt) with derf(E(w))/dw > 0 and erf(.) ∈ [−1,1]. In this case, the sufficient condition(23) for .C(w) < 0 is derived.12With a bounded Weibull, the density becomes f(w) = (β/η)(w/η)β−1e−(w/η)β/(1− e−w/b). SoC(w) = −e−(w/η)β + e(−w/η)ββ(wη )βe(−w/η)βDifferentiating with respect to w, we obtain:.C(w) = − 1w [1 +((wη )β − 1) (1− e)(w/η)β−(w/η)β]which is < 0 when w ≥ η. Therefore, a modal w larger than η is a sufficient condition for .C(w) < 0.When the log-normal distribution is bounded, the density becomesf(w) = 1wσ√2πe−(lnw−µ)2/(2σ2)/(1+ erf(g(w)))where g(w) = erf ((lnw− µ)/(σ√2)). Hence, 15



The marginal tax rate is then decreasing, and tends to zero at the top of the skill distrib-ution. Therefore, the SOIC conditions are satisfied, the tax function is strictly concave inincome and the average tax rate single-peaked (if T (y) < 0).We can summarize our results for quasilinear-in-leisure preferences and distinct skill dis-tributions as follows.Proposition 2: With a maxi-min criterion and quasilinear-in-leisure preferences:(i) The tax pattern depends exclusively on the distribution of skills through C(w).(ii) The optimal marginal tax profile is decreasing in skill with truncated Pareto, withuntruncated and, if wm is larger than the scale density parameter, with truncatedWeibull, and if conditions (23) and (24) apply, with untruncated and truncatedlog-normal skill distributions.(iii) The asymptotic tax rate is zero for all distributions considered except with an un-truncated Pareto distribution where it is finite. With this distribution applyingbeyond wm, the marginal tax profile has a hockey-stick profile in skill and income.(iv) The tax profile is increasing and strictly concave in income and the average tax rateis single-peaked in income (if T (y) < 0) with all the above distributions except theuntruncated Pareto. When the whole skill distribution is untruncated Pareto, theaverage tax rate is increasing.5 Quasilinear-in-consumption preferencesIn this section, we consider preferences that are quasilinear-in-consumption as in Diamond(1998): v(x) = x and h′′(ℓ) > 0.13 Hence there are no income effects on labor supply, andboth the compensated or uncompensated elasticities may be written:e(w) = h′(ℓ)ℓh′′(ℓ)Since v′ (x (w)) = 1, the expression for marginal tax rates, (16), becomes:14T ′(y(w))1− T ′(y(w)) = (1 + ℓh′′(ℓ)h′(ℓ) )(1− F(w)wf(w) ) = A(w)C(w) (25)C(w) = g (w)− g(w)(2/(σ√2π)) e−(lnw−µ)2/(2σ2)In this case, we find that .C(w) < 0 if and only if inequality (24) is satisfied.13Actually, Diamond defines h (1− ℓ) as the utility of leisure, with h′ (1− ℓ) > 0 > h′′ (1− ℓ). Therefore,the expressions we derive are not exactly identical to his.14The factor B (w) disappears from (16) because, as it can be readily verified,B (w) = v′(x(w))1− F (w) ∫ ww f (t)v′ (x (t))dt = 1 when v′ = 116



Since only a substitution effect now prevails, the larger the labor supply elasticity, thelower A(w), and the lower the optimal marginal tax rates.Suppose further that the elasticity of labor supply e(w) is constant (e.g., h(ℓ) = ℓα),so that A(w) = A. In this case, T ′(y(w)) depends only on C(w), that is, on the prop-erties of the distribution function F (w). With quasilinear-in-leisure preferences, we alsoderived in (19) that T ′(y(w)) depends only on C(w). The results of the previous sectionthen apply. All the properties we highlighted with distinct distribution functions for theoptimal tax profile with quasilinear-in-leisure preferences are also valid with quasilinear-in-consumption preferences and A (w) constant.Our previous results with Pareto distributions may then be contrasted with Diamond(1998) who uses a Pareto distribution and quasilinear-in-consumption preferences. Hefinds that with a standard social welfare function that is increasing in all its argumentsand assuming an untruncated skill distribution beyond the mode, the marginal tax rateis U-shaped. The use of a maxi-min objective eliminates the rising part of his U-shapedmarginal tax rate structure. As soon as the Pareto distribution is truncated, the differencewith Diamond’s result becomes even sharper. In this case, the marginal tax rate decreasesmonotonically with w both before and after the mode.With quasilinear-in-consumption preferences, it is straightforward to derive the opti-mal tax schedule in a simple Lagrangian problem. Appendix 3 presents this derivationand shows that the shadow price of public funds is simply unity with quasilinear-in-consumption preferences. A unit increase of revenue requirements R will cause all house-holds, including the least-skilled, to decrease their consumption by one unit. This has avalue of unity to the least well-off household.5.1 An example with non-constant labor supply elasticityWhen the elasticity of labor supply–and therefore A (w)–is not constant, the problembecomes rather more complicated unless we assume special functional forms. A particu-larly useful case is where the utility of leisure is logarithmic, a case considered by Diamond(1998) and Dahan and Strawczynski (2000). The maxi-min criterion allows us to charac-terize the entire optimal tax profile for various skill distributions, rather than only beyondthe mode as in Diamond (1998) where a general social welfare function is used.In this case, the disutility of labor becomes h(ℓ) = − ln(1− ℓ) and the utility functionis u (x, ℓ) = x + ln (1− ℓ). The compensated (and uncompensated) elasticity (4) can berewritten as: 17



e(wn) = 1− ℓ(w)ℓ(w) (26)Moreover, the first-order condition at the household level (3) becomes:1− T ′(y(w)) = 1(1− ℓ(w))w (27)In the absence of taxation, labor supply increases with productivity and approaches unityas w approaches +∞. Hence the individual is induced to supply more labor up to amaximum level, ℓ = 1 in our case. Then, from (26), the elasticity is decreasing in w andtends to zero: limw→∞ e(wn)→ 0.The expression for the pattern of marginal tax rates is obtained using (25):T ′(y(w))1− T ′(y(w)) = 11− ℓ(w) 1−F (w)wf(w) = A(w)C(w) (28)An alternative expression can be obtained by substituting (27) into (28) to give:T ′(y(w))(1− T ′(y(w))2 = 1− F(w)f(w) = wC(w) (29)where the middle term is the inverse of the hazard rate. Using this expression, we shallinvestigate the pattern of marginal tax rates for a series of different types of skill distrib-utions as before.Before turning to the characterization of optimal tax structures, recall that a sufficientcondition for satisfying the SOIC conditions is a non-increasing marginal tax rate. From(28), .C(w) < 0 is no longer sufficient for T ′(y(w)) to be decreasing in w. As long as ℓ (w)increases with w, T ′(y(w)) can increase with w. In this case, the SOIC conditions canthen be violated and our computations invalidated.In what follows, we consider the pattern of optimal tax rates when the distributiontakes distinct shapes. Before wm, wC(w) = (1 − F (w))/f (w) will be decreasing asbefore. Therefore, by (29), T ′(y(w)) will be declining before wm for any single-peakeddistribution. The SOIC conditions are then satisfied below wm with this non-constantlabor supply elasticity so there will be no bunching at the bottom on that account. Andfrom Proposition 1(vi), the tax function is increasing and strictly concave in y belowthe mode. Again, we suppose that those distributions with decreasing densities (i.e., thePareto and Weibull with β ≤ 1) apply beyond wm, while those with single-peaked densitiesapply everywhere. 18



Pareto distributionSuppose the skill distribution is Pareto above wm. For an untruncated Pareto distributions,we have shown that C(w) = 1/a, so wC(w) = waThis implies that the marginal tax rate is monotonically increasing with w where thePareto distribution applies. Moreover, as w →∞, we have from (29):T ′(y(w))(1− T ′(y(w))2 →∞which means that T ′(y(w)) goes to unity at the top. This result occurs because with anuntruncated Pareto distribution, C(w) is constant (1/a). From (28), the only factor thatvaries along the entire skill range is A(w) ≡ 1/(1− ℓ(w)). Therefore, A(w) goes to infinityas the wage goes to infinity, so the optimal asymptotic tax rate goes to unity.From (15), as long as the SOIC conditions are satisfied, the tax function is thenincreasing and strictly convex in y where the Pareto distribution applies. Therefore,we cannot draw the same conclusions about average tax rates for a Pareto distributionapplying beyond the mode since the sufficient conditions of Proposition 1(vi) are notsatisfied.15If the Pareto distribution is truncated at w <∞, we obtain from (22):wC(w) = wa [1− (ww)a]Therefore, again, for a bounded distribution, we have a zero marginal tax rate at the top.Moreover, .wC(w) = 1/a − (w/w)a(1/a + 1) ≷ 0 if w ≶ w/ ( a√1 + a). Hence, the optimalmarginal tax profile has an inverted U-shaped pattern beyond wm with a maximum atw = wa/ ( a√1 + a). Overall, the marginal tax rate declines in skill until wm, and then takesan inverted U-shape once the Pareto distribution sets in.16 Moreover, assuming that theSOIC conditions are satisfied where T ′(.) increases with w (which is not guaranteed), (15)would imply that, beyond the mode, T ′(y) first increases with y and becomes decreasingfor higher y. This implies that the marginal tax rates cannot be U-shaped in income.The optimal average tax rate is increasing at the bottom of the income distribution (if15In the specific case where the whole skill distribution is Pareto, the tax function is increasing andstrictly convex in y everywhere hence, as soon as we assume T (y) < 0, the average tax rate is increasing iny. This last result can easily be verified through a similar graphical exercise to the one of Figure 1, here,with a strictly convex tax function.16As before, if there is a range between the mode and the skill level at which the Pareto distributionapplies, the marginal tax rate could be rising or falling there.19



T (y) < 0) and decreasing (at least) close to the top. (We cannot conclude about theaverage tax profile over the rest of the distribution.)Weibull distributionSuppose first that the Weibull distribution is untruncated. For β ≤ 1, the density isdecreasing, while β > 1 gives a single-peaked density. For β < 1, we have that wC(w) =w1−β/ (β(1/η)β) increases, is strictly convex and tends to ∞ when w → w = ∞. (Notethat wC(w) is unbounded at w.) Then, the marginal tax rate increases and is strictlyconvex in w. Moreover, at w = ∞, from (29), T ′(y(w)) goes to unity. From (15), theincreasing (in y) tax function is then strictly convex once the Weibull distribution sets in,as long as the SOIC conditions are satisfied. Therefore, we cannot conclude about averagetax rates for a Weibull distribution applying beyond the mode since sufficient conditionsof Proposition 1(vi) are not satisfied. However, in the specific case where the whole skilldistribution is Weibull with β < 1, the tax function is increasing and strictly convex in yeverywhere. If we assume T (y(w)) < 0, the average tax rate is increasing in y.For β = 1, which is the special case of an exponential distribution, wC(w) = η.Therefore, the marginal tax rate in the maxi-min case is constant (and strictly positive) inthe range where the exponential distribution applies. Thus, the optimal marginal incometax has a hockey-stick profile: the marginal tax rate is constant for w > wm where theexponential distribution applies, and declines before that.From (29), it is interesting to note that a (strictly positive) constant wC(w) (equiv-alently, a constant hazard rate) implies that a 100 percent marginal tax rate at the topis never optimal. The optimal tax function itself is increasing and concave in y. It isincreasing in y below y(wm) and constant above it. Therefore, our sufficient conditions ofProposition 1(vi) are not satisfied and we can draw no conclusions on the average tax rateexcept at the bottom where it is increasing in y (if T (y) < 0). However, if the exponentialdistribution applies over the whole distribution, the optimal tax profile is then linear in yhence, the optimal average tax rate is increasing in y (if T (y) < 0).For β > 1, wC(w) increases, is strictly concave and tends to ∞ at the top. Then,T ′(y(w)) is increasing in w and strictly concave above wm where this distribution applies.The marginal tax rate tends to unity at the top. Therefore, when a Weibull with β > 1applies and when the SOIC conditions are satisfied, the tax function is increasing andstrictly convex in y, with T ′(y) → 1. Average tax rates are then increasing in y, ifT (y) < 0 when the Weibull with β > 1 applies.20



Suppose now that the Weibull distribution is truncated. In this case, wC(w) is alwaysdecreasing when, as previously, we assume that wm > η (usually standardized to 1).Therefore, T ′(y (w)) is necessarily decreasing over the entire Weibull distribution range,and the SOIC conditions are satisfied. Again, the optimal asymptotic tax rate is equal tozero. From Proposition 1(vi), the optimal tax function is then strictly concave and theoptimal average tax rate is single-peaked (if T (y) < 0).Log-normal distributionAgain, we begin with the untruncated case. Recall that the right-hand-side of (29) isthe inverse of the hazard function. We know that the hazard function of the log-normaldistribution first increases from zero and then ultimately falls back to zero. Hence, themarginal tax scheme is U-shaped. The hazard function of the log-normal distribution doesin fact have a single maximum at a value of x = (logw − µ)/σ satisfying h(x) = σ + µ(Lancaster, 1990). At the median skill (w = eµ), x = 0. The value of σ such that h(0) = σis 0.7978 (see Table 3.1., Lancaster, 1990). Therefore, if σ ≃ 0.8, the minimum marginaltax rate is at the median. Moreover if σ is lower than 0.8, then the minimum point is tothe left of the median, and vice versa (Dahan and Strawczynski, 2004).We can show that if σ ≃ 0.4, marginal tax rates decline until the mean (eµ+0.5σ2 withσ ≃ 0.4) multiplied by e0.3, and then they rise, so the minimum marginal tax rate is atthe mean multiplied by e0.3. Moreover, if σ > 0.4, then the minimum point is at the rightof the mean multiplied by e0.3, and vice versa.17Again, the SOIC conditions may be violated in the range of w where T ′(.) increases.Moreover, as w→∞, from (29) and the fact that limw→w f(w)1−F (w) = limw→w (1/ wσ2log(w)−µ)(e.g. Lancaster, 1990; Dahan and Strawczynski, 2004), we obtain as with the untruncatedPareto distribution: T ′(y(w))(1− T ′(y(w))2 →∞which means that T ′(y(w)) goes to unity at the top. Again this is because the elasticity oflabor supply goes to zero at the top when utility is linear in consumption. From (15), thetax profile is then increasing and concave in y below and beyond the mode up to a certainy where it becomes convex. Therefore, the average tax rate is increasing at the bottom of17Using Table 3.1. in Lancaster (1990), if σ ≃ 0.26, marginal tax rates decline until the mean multipliedby e0.23 and then they rise (i.e., the minimum marginal tax rate is at the mean multiplied by e0.23). Andif σ > 0.26, then the minimum point is at the right of the mean multiplied by e0.23, and vice versa. If σ≃ 0.5, marginal tax rates decline until the mean multiplied by e0.4 and then they rise, that is, the minimummarginal tax rate is at the mean multiplied by e0.4. If σ > 0.5, then the minimum point is at the right ofthe mean multiplied by e0.4, and vice versa. 21



the income distribution and we cannot conclude for the rest of the distribution.Finally, suppose that the log-normal distribution is truncated at w <∞. In this case:.wC(w) < 0 as e(lnw−µ)2/(2σ2) (g (w)− g(w)) (σ2 + lnw − µ) < 0.8σ (30)and again we have the standard result for a bounded distribution, T ′(y(w)) = 0. T ′(y(w))is then decreasing in w and the SOIC conditions are then satisfied. The tax function isstrictly concave in y and the average tax rate is single-peaked in y (if T (y) < 0).The results of this section are summarized as follows.Proposition 3: Assuming a maxi-min criterion and quasilinear-in-consumption prefer-ences, if the elasticity of labor is constant, Proposition 2 applies. If the utility of leisureis logarithmic:(i) T ′(.) is decreasing for w < wm.(ii) T ′(.) is decreasing in w, T (y) is concave and the average tax rate is single-peaked iny (if T (y) < 0) with a truncated Weibull (with wm > η) and a truncated log-normaldistribution (if condition (30) is met in the latter case).(iii) For w > wm, T ′(.) is constant with an untruncated Weibull distribution withβ = 1 (i.e., an exponential distribution), T ′(.) is increasing with an untruncatedPareto and an untruncated Weibull with β 
= 1, and U-shaped with an untruncatedlog-normal distribution. (The SOIC conditions may be violated and these last resultsinvalidated over any range of skills where T ′(.) increases.)(iv) The asymptotic tax rate converges to unity for untruncated Pareto, untruncatedWeibull when β 
= 1 and untruncated log-normal skill distributions. The asymptotictax rate is positive but lower than unity with an untruncated exponential distribu-tion.(v) If T (y) < 0, the average tax rate is increasing in y with untruncated Pareto anduntruncated Weibull distributions, both applying over the entire skill distribution.6 The non-negative income constraintThroughout this paper, our analysis (especially in the case where utility is linear in leisure)requires that labor supply and therefore before-tax income be non-negative. However, asgovernment revenue requirements R decrease, so too will gross labor income. Since theSOIC conditions are not binding below the mode, y(w) will be increasing. Eventually apoint will be reached where incomes from the lowest-wage households fall to zero. As R isreduced further, an increasing range of low-wage people find their incomes reduced to zero.22



Since they must all obtain the same consumption, we have a situation in which bunchingat the bottom occurs even though the SOIC conditions are not violated. This bunchingillustrates voluntarily unemployment where the low-skilled choose to work zero hours sotheir gross incomes are zero over the bunching interval. From (9), this implies that utilityis also constant over the bunching interval. Moreover, the SOIC constraint .y(w) ≥ 0implies that this type of bunching can occur only at the bottom of the skill distribution.Thus, if R is low enough, at the optimum there is a range of skills w ≤ w ≤ wy , wherethe non-negativity constraint on income is binding. Over this range, x(w) is constant atx(wy) ≡ x0.Consider the case of quasilinear-in-leisure preferences. This is the case where non-negative income constraint is most likely to be relevant, and is the most transparent caseto analyze. In the presence of this type of bunching, the first-order conditions continueto apply outside of the bunching interval. This implies that our qualitative results aboutthe optimal tax rates are maintained for all w ∈ [wy , w]. Associating λ and ζ(w) respec-tively with the government’s budget constraint and the FOIC constraint, the Hamiltonianbecomes:HB(w) = u(w)I[w=w] + ∫ wwy {λ[wℓ(w)− x(w,u(w), ℓ(w))]f(w) + ζ(w)ℓ(w)w }dw+λ(F(wy)x0 −R) (31)with ℓ(wy) ≥ 0 where wy is a new control variable and x0 = x(wy). Equation (19), whichgives the optimal tax schedule, is still valid for any w ≥ wy. In particular, individuals atthe top end of the bunching interval (type-wy households) have a positive marginal taxrate. Therefore, if a solution to the optimization problem (11) implies y(wy) < 0, then thesolution to the optimization problem (31) is characterized by a non-empty range of skills[w,wy ] such that y(w) = 0 and x(w) = x0 for all w ∈ [w,wy], and the path of consumptionfor households with skills above wy is characterized by (21).Recall that if the non-negative income constraint is not binding, neither λ nor x(w) isaffected by changes in R: y(w) increases uniformly with R. But, with the non-negativeincome constraint binding, λ is affected by changes in wy as shown by the following formula(derived in Appendix 4) for the shadow price of public funds:λ = 1/wyF(wy)/[wyv′(x0)] + (1−F (wy)) (32)It is evident that λ depends now on R, unlike the case when the non-negativity constrainty(w) ≥ 0 is not binding at any skill level (see (20)). The difference between the two formula23



is readily understood. Consider a unit increase in the required labor income of householdswith skills w ≥ wy , this increase being triggered by a rise in R. This increase yields1−F(wy) in tax revenue. The only loss in social welfare due to the increased in requiredlabor income comes from people with u(w) as utility level (hence, x0 as consumption).To continue satisfying the incentive compatibility constraints of households with skill wy ,x0 needs to be adjusted by dx0 = −(1/v′(x0)wy)dy < 0. This causes a loss in the socialwelfare u(w) equal to 1/wy . It also decreases public expenses by an amount given by thefirst term in the denominator in (32).Appendix 4 undertakes a comparative static exercise, similar to Boadway et al (2000)and Boone and Bovenberg (2006) but with a maxi-min criterion, to determine the effectof a change in R on wy and λ. We derive the following proposition.Proposition 4: With a maxi-min criterion and bunching due to a binding non-negativityincome constraint, dλ/dR > 0, dwy/dR < 0, dx0/dR < 0 and dx(w)/dR = 0 for w > wy .The results of Proposition 2 apply for w > wy.Contrary to the case without bunching, a higher level of R raises the marginal cost of publicfunds. The required additional resources come from additional work effort of the employedpersons and new entrants into the labor market (as the bunching interval decreases), anda lower consumption level of the unemployed.7 ConclusionsThe purpose of this paper has been to provide as full a characterization as possible ofthe solution of the optimal income tax problem when preferences are additive and thenormative criterion is maxi-min. Focusing on the maxi-min objective is fruitful for anumber of reasons. First, it is straightforward to obtain a clear understanding of theeconomic effects underlying the optimal tax profile since we are left with only two mainsources of influence on the optimal tax structure: the variability of labor and the shapeof the skill distribution. Second, one can derive analytical results on the shape of the taxprofile in both skills and income without resort to numerical simulations. For example,we can derive sufficient conditions for a decreasing marginal tax profile over the entirerange of skills or incomes, in contrast to the U-shape profile obtained when social welfarehas a finite aversion to inequality (e.g. Diamond 1998, Saez 2001). Further, we canderive sufficient conditions for a single-peaked average tax rate. Third, considering thespecific and often used quasilinear preferences, and assuming the elasticity of labor supply24



constant when preferences are quasilinear-in-consumption, allows us to show how thedistribution of skills alone determines the optimal tax profile, and generally results ina decreasing marginal tax profile in skills, a concave tax function in income and a single-peaked average tax rate. With quasilinear-in-leisure preferences, as long as the minimumincome constraint is not binding, changes in government revenues induce equal per personchanges in income, with no change in consumption. This reflects the zero income elasticityof labor supply and results in a very simple representation of the shadow price of publicfunds. A consequence of this is that as government revenue is reduced, eventually somebunching will be induced at the bottom as the non-negativity income constraint becomesbinding. Once that happens, further reductions in the government public spending willaffect both the size of the bunching interval and the structure of the marginal tax rates.However, our previous general qualitative results continue to hold outside of the bunchinginterval.
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Appendix 1. General additive preferencesDerivation of optimal marginal tax formula (13)The Hamiltonian function for the maxi-min problem (11) is:Hu(w) = u(w)I (w)+ λ[wℓ(w)− x(w,u(w), ℓ(w))]f(w) + ζ(w)ℓ(w)h′(ℓ(w))wwhere ℓ (w) is the control variable, u (w) the state variable (given by FOIC conditions (9)),λ is the multiplier associated with the budget constraint (6) and ζ(w) is the multiplier ofthe FOIC constraints (the shadow value of the state variable u (w)). The first-order andtransversality conditions are:∂Hu∂ℓ = λ[w − h′(ℓ)v′(x)] f(w) + ζ(w)h′(ℓ)w (1 + ℓ(w)h′′(ℓ)h′(ℓ) ) = 0 (33)∂Hu∂u = 1− λf(w)v′(x(w)) = −∂ζ(w)∂w for w = w (34)∂Hu∂u = − λf(w)v′(x(w)) = −∂ζ(w)∂w ∀w > w (35)ζ(w) = 0 (36)Integrating of both sides of (35) we have:−∫ ww f(t)v′(x(t))dt = −ζ(w)− ζ(w)λ ∀w > wand using the transversality conditions (36) we obtain:−ζ(w)λ = ∫ ww f(t)v′(x(t))dt > 0 (37)This equation is still true at w since there is no mass point at w. The shadow price ζ(w)is the effect of an increase of u(w) on the value of the objective function, u(w). Using (3),(33) may be rewritten as:T ′(y(w))1− T ′(y(w)) = −ζ(w)v′ (x(w))λwf(w) (1 + ℓh′′(ℓ)h′(ℓ) ) ∀w ∈W (38)Consider now the equivalent problem (12) where tax revenue is maximized. The cor-28



responding Hamiltonian is:HR(w) = [wℓ(w)− x(w,u(w), ℓ(w))]f(w) + π(w)ℓ(w)h′(ℓ(w))wwhere the control and state variables are the same as in the primal problem and themultipliers of the FOIC conditions are now π(w). The necessary conditions are:∂HR∂ℓ = [w − h′(ℓ)v′(x)] f(w) + π(w)h′(ℓ)w (1 + ℓ(w)h′′(ℓ)h′(ℓ) ) = 0 (39)∂HR∂u = − f(w)v′(x(w)) = −∂π(w)∂w (40)and u(w) = u. The transversality condition is:π(w) = 0 (41)The solution to this problem is equivalent to the solution to problem (11). By inte-grating of both sides of (40) and using the transversality conditions (41) we obtain:−π(w) = ∫ ww f(t)v′(x(t))dt (42)This is similar to (37) except that the left-hand side of the latter was the ratio of theshadow price associated with the FOIC conditions to the marginal cost of public funds.The shadow price π(w) measures the effect of an increase of u(w) on the value of taxrevenue, and is essentially equivalent to the ratio of the shadow prices in the problem(11). Moreover, using (3), (39) may be rewritten as:T ′(y(w))1− T ′(y(w)) = −π(w)v′ (x(w))wf(w) (1 + ℓh′′(ℓ)h′(ℓ) ) ∀w ∈W (43)This is exactly analogous to (38) for the problem (11), and confirms that the solutions tothe two problems are the same.Equivalently, (37) and (38) or (42) and (43) may be combined to yield (13).Appendix 2. Quasilinear-in-leisure preferencesDerivation of (18)Using h′(ℓ) = 1, h′′(ℓ) = 0 and substituting (33) into (35) we have·ζ(w) = ζ(w)w + λf(w)w ∀w > w (44)29



This is a linear differential equation that can be solved using the method of the varyingconstant. Considering only the homogeneous part, we can write ·ζ(w)/ζ(w) = dw/w.Integrating both sides, we get ln(ζ(w)) = ln(w)+β(w) with β(w) as an arbitrary constant.Taking antilogs then gives ζ(w) = weβ(w). Then, differentiating with respect to w, we get·ζ(w) = eβ(w) + weβ(w) ·β(w). Substituting this into (44) yields:eβ(w) +weβ(w) ·β(w) = ζ(w)w + λf(w)w ∀w > wSubstituting ζ(w) = weβ(w) obtained above into this last equation, we have: eβ(w) ·β(w) =λf(w), or equivalently deβ(w)/dw = λf(w). Integrating up to w, we can rewrite:eβ(w) = λ ∫ ww f(t)dt+ β0for some constant β0. Substituting this into ζ(w) = weβ(w) yields::ζ(w) = w [β0 + λ∫ ww f(t)dt] ∀w > wWith the transversality condition (36), evaluating ζ(w) at w = w implies that λ = −β0 >0. Hence, the above equation for ζ(w) can be rewritten asζ(w) = −wλ(1− F(w)) ∀w > w (45)Substituting (45) into (37), we obtain (18).Derivation of (19) by the Lagrangian methodTransform the utility function as in Lollivier and Rochet (1983), V (w) ≡ wu (x (w) , y (w) /w) =wv(x(w))− y(w). The government’s problem is to maximize V (w) subject to∫ ww [wv(x(w))− V (w)− x(w)]f(w)dw ≥ Rand V (w) = V (w) + ∫ ww v(x(t))dtwhere the first constraint is the budget constraint (6) and the second constraint is theintegral of the FOIC conditions (7) using .V (w) = u(x(t)). Substituting V (w) from thesecond constraint into the first yields:∫ ww [(wf(w)− 1 + F(w))v(x(w))− x(w)f(w)]dw − V (w) ≥ R30



where we have made use of Fubini’s theorem to evaluate the double integral. The gov-ernment problem is to choose V (w) and x(w) to maximize V (w) subject to this revenueconstraint. The first-order conditions immediately yield (20) and (21). Substituting (21)and h′(ℓ) = 1 into (3), we obtain (19).Proof that dy(w)/dR = 1 with quasilinear-in-leisure preferencesFrom the utility function, ℓ(w) = v(x(w))− u(w). Substituting this into (9) gives:.u(w) = v(x(w))w − u(w)w (46)This linear differential equation can be solved using the method of varying constant. Fromthe homogeneous part, we know thatdu(w)dw = −u(w)w or du(w)u (w) = −dwwIntegration yields: ∫ du(w)u (w) = −∫ 1wdwso, lnu(w) = −[ln(w) + γ(w)], where γ(w) is an arbitrary constant. Taking antilogs, wearrive at: u(w) = e− ln(w)e−γ(w) = (1/w)(1/eγ(w)) (47)Differentiating with respect to w we obtain:.u(w) = −1eγ(w)w (1/w + ∂γ(w)∂w )Using (46) and (47), we can rewrite this as:v(x(w)) = −1eγ(w) .γ(w) ⇔ v(x(w)) = ddwe−γ(w)Integrating up to w, we get: e−γ(w) = ∫ ww v(x(t))dt+ I(w)for some constant I(w). Using (47) again:u(w) = (1/w)(∫ ww v(x(t))dt+ I(w)) (49)where we can redefine I(w) as J(w)−R. From the definition of the utility, we have31



y(w) = w(v(x(w))− u(w)) = w(v(x(w))− ∫ ww v(x(t))dt− J(w) +R (50)Substituting (49) into (50) and then into the binding budget constraint (6) we get:∫ ww f(w)wv(x(w))dw − ∫ ww (1−F (w))v(x(w))dw − J(w)− ∫ ww x(w)f(w)dw = 0where we have used Fubini’s theorem. Substitute this into (50) to obtain:y(w) = K(w) +Rwhere (using Ebert’s (1992) notation)K(w) = wv(x(w))− ∫ ww {v(x(w))[wv(x(w))− 1 + F(w)]− x(w)f(w)}dw − ∫ ww u(v(t))dtNote that K(w) depends only on the distribution of skills and the functional form of u(x),since v(w) depends only on these two elements. This implies thatdy(w)dR = 1 ∀w ∈W (51)Appendix 3. Quasilinear-in-consumption preferencesDerivation of (25) by the Lagrangian methodIntegrating the FOIC constraint (9) from w to w gives:u(w) = u(w) + ∫ ww h′(y(t)/t)t2 y(t)dt (52)and substituting this into the revenue constraint (6) for u(w) , where x(w) = u(w) +h(ℓ(w)), gives:∫ ww [y(w)− h(y (w)w )] f(w)dw − u(w)− ∫ ww h′(y(w)/w)w2 y(w)(1−F (w))dw = Rwhere we have used Fubini’s theorem to evaluate the double integral. The governmentproblem is then to choose u(w) and y(w) to maximize u(w) subject to this revenue con-straint. The first-order conditions yield λ = 1, andh′(ℓ)w = wf(w)wf(w) + (1−F (w))(1 + e−1(w))32



Then, substituting (3), where v′(x) = 1, into the latter yields (25).Proof that dx(w)/dR = −1 with quasilinear-in-consumption preferencesFrom the utility function, we can write:x(w) = u(w) + h(ℓ(w)) (53)Substituting this into the binding government budget constraint (6), we obtain:∫ ww [y(w)− u(w)− h(ℓ(w))]f(w)dw −R = 0Using the FOIC condition (52) and Fubini’s Theorem, this can be written:u(w) = −R+ ∫ ww [y(w)− h(ℓ(w))]f(w)dw − ∫ ww h′(ℓ(w))w ℓ(w)(1−F (w))dwSubstitute this into (53) using (52) for u(w) and obtain:x(w) = −R+ L(w)whereL(w) = ∫ ww [wℓ(w)− h(ℓ(w))]f(w)dw − ∫ ww h′(ℓ(w))w ℓ(w)(1− F(w))dw+ h(ℓ(w))Since L(w) depends only on the distribution of skills and the functional form of h(ℓ(w))(since ℓ(w) depends only on these two elements), this implies thatdx(w)dR = −1 ∀w ∈WAppendix 4. Derivation of Proposition 4With bunching due to a binding non-negativity income constraint, we can derive twoequations in λ and wy. Integrating both sides of (35) from w to w with w = w + ε (withε approaching 0), we find18 ζ(w)− ζ(w) = −wλ(1− F(w))18Although (34) (slightly modified such that it is satisfied ∀ w ∈ [w,wy]) should hold (as all people in therange [w,wy] should get the same outcome), integrating it would move us away from maxi-min. It wouldimply that we weigh the utility of type w by the number of people receiving this utility. For maxi-min,this is irrelevant. 33



Since the necessary conditions for the Hamiltonian optimization problem associated with(11) and the Lagrangian optimization problem in Appendix 2 are equivalent, λ will be aswell. Therefore, we can substitute (20) into (45) and obtainlimw→w ζ(w) = −1Substituting this into the previous equation, we obtain ζ(w) = −wλ(1−F (w)). From thisand (45), setting w = wy , we may rewrite1− λwy(1−F (wy)) = λF (wy)v′(x0)which gives (32). Substituting (21) for w = wy into (32) for u′(x0) yields the followingexpression for λ in terms of wy :λ = f(wy)f(wy)wy − F(wy)(1− F(wy)) (54)It can be shown that (54) is downward sloping as follows. Substituting wy = w in (54),we obtain λ = 1wSimilarly for wy = w, we can write: λ = 1− w− 1wSince 1/w > (w−w+1)/w, this curve must be downward sloping over parts of the range[w,w] in (wy , λ) space.To obtain the second relationship between wy and λ, rewrite the government budgetconstraint as −F(wy)x0 + ∫ wwy [y(w)− x(w)]f(w)dw = RFollowing the same procedure as in Appendix 2, the expression for y(w) when the non-negative income constraint is binding isy(w) = wv(x(w))− ∫ wwy v(x(t))dt+ (1− F(wy))−1×[R+F (wy)x0 − ∫ wwy {v(x(w))[wf(w) + F(w)− 1]− x(w)f(w)} dw]34



Evaluating this at w = wy where y(wy) = 0 yields an equation determining wy :(1− F(wy))wyv(x(wy)) +R+F (wy)x0= ∫ wwy {[f(w)w − (1−F (w))]v(x(w))− f(w)x(w)}dw (56)which is upward sloping in (wy, λ) space if .x(w) ≥ 0 as shown in Boone and Bovenberg(2006). Following them, when x′(wy) > 0, (wy , λ) are determined by the intersection ofthe downward sloping curve (54) and the upward sloping curve (56). Clearly, (54) is notaffected by a change in R. It can be shown (see Boone and Bovenberg 2006) that (56)shifts upwards (and to the left) as R increases. Hence, wy falls and λ rises with R. By(32), x0 varies inversely with changes in λ. However, by (21) we see that with a maxi-min criterion, the rise in λ does not imply a reduction of consumption and a rise in themarginal tax rate for all types w > wy as it would be the case with a utilitarian criterion.
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Figure 1 Single-peaked average tax rate
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