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Abstract

This paper proposes a data-driven rate-optimal procedure for testing serial correla-

tion of unknown form based on modified Hong’s tests (1996). The tests are based on

comparison between a kernel-based spectral density estimator with the null spectral

density, using a Quadratic norm, Helling metric, and Kullback information criterion

respectively. Under the null hypothesis, the asymptotic distributions of our modified

tests are N(0,1). The advantages of our procedure are: (1) the choice of the parame-

ter of the kernel is not arbitrary but data-driven; (2) the tests are adaptive and rate

optimal in the sense of Horowitz and Spokoiny (2001); (3) the tests detect Pitman

local alternatives with rate that can be arbitrary close to n−1/2. By simulation, we

find that our procedure to select the kernel parameter have accurate level and they

are more powerful than LM, BP, LB and Hong tests.
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(FCAR). We would also like to thank Emmanuel Guerre and Pascal Lavergne for comments on an earlier draft of the paper.

We acknowledge Douglas Hodgson for helpful comments at Annual Journée du Cirpée Conference.
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1 Introduction

In this paper, we derive rate-optimal consistent one-sided tests for serial correlation of unknown form for

the residual from a linear dynamic regression model. Unlike Durbin and Watson (1950, 1951) test, Box

and Pierce (BP) (1970) test, theses tests are valid also for the model that includes both lagged dependent

variables and exogenous variables. Our procedure is based on tests developed by Hong (1996) which are

obtained by comparing a kernel-based normalized spectral density to the null normalized spectral density,

using quadratic norm, the Hellinger metric, and the Kullback-Leibler information criterion respectively.

However, the choice of the parameter of the kernel in the Hong tests is arbitrary. Obviously, the power of

these tests depends on this choice. We propose a data-driven procedure to choose optimally this parameter.

Similar to Guerre and Lavergne (2004) and Guay and Guerre (2005), the data driven choice of the kernel

parameter relies on a specific criterion tailored for testing purpose.

The objective is to test the null hypothesis against as large a class of alternatives as possible. That is the

reason why we do not assume any special parametric structure for the alternative. This leads to considering

a nonparametric alternative set. The tests developed by Hong (1996) are then well suited to accomplish

this purpose. In particular, the null of distribution of considered tests remains invariant when the regressors

include lagged dependent variables and is valid without having to specify any alternative model.

The asymptotic power of a test of H0 is often investigated by deriving the asymptotic probability that the

test rejects H0 against a local alternative hypothesis whose the distance from the null hypothesis converges

to zero as n → ∞. This approach is the familiar Pitman’s local analysis. Here, we adopt a nonparametric

minimax approach (see Ingster 1993). This approach evaluates the power of a test uniformly over a set of

alternatives, called H1(ρn) that lie at a distance ρn from the null hypothesis of no serial correlation and that

belong to a class of smooth functions with a smoothness index s. The optimal minimax rate is the fastest

rate at which ρn can go to zero while a test can uniformly detects any alternative in H1(ρn). Such a test

is called rate-optimal for a known smoothness parameter s. Our procedure is adaptive in the sense that we

consider that the smoothness parameter sn is unknown and depends on the data. The resulting statistic test

is the data-driven rate-optimal based on a minimax approach. Our testing procedure have the adaptive and

optimal rate in the sense of Horowitz and Spokoiny (2001).

For the selection of the smoothing parameter, Hong (1996) recommend to use in practice the cross-

validation procedure of Beltrao and Bloomfield (1987) and Robinson (1991). However, this criteria is tailored

for estimation but not for testing purpose. In fact, there exists no optimal testing properties for such criteria.

In particular, it does not yield adaptive rate-optimal tests in the senses defined above.

Many adaptive rate-optimal procedure are based on maximum approach, which consists in choosing as a
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test statistic the maximum of studentized statistics associated with a sequence of smoothing parameter. The

approach is used in Horowitz and Spokoiny (2001) to deal with detection of misspecification for nonlinear

model with heteroscedastic errors.

We consider here a data-driven choice of the smoothing parameter in the line of a specific criterion

tailored for testing purposes as in Guerre and Lavergne (2004) and Guay and Guerre (2005). This yields

adaptive rate-optimal tests. Under the null, the procedure favors a baseline statistic distributed as Normal

(0, 1). In contrast, in the maximum approach, critical values diverge and must be evaluated by simulation

for any sample size. Moreover, the standardization uses for the statistic test proposed in our procedure is

the one under the null. This increases power at no cost under the null from the asymptotic point of view.

The advantages of our procedure are thus: (1) the choice of the parameter of the kernel is not arbitrary

but data-driven. Our data-driven choice of this parameter relies on a specific criterion tailored for testing

purpose. This choice renders the test robust and more powerful and yields an adaptive rate-optimal test; (2)

the tests are adaptive and rate optimal in the sense of Horowitz and Spokoiny (2001); (3) the tests detect

Pitman local alternatives with rate that can be arbitrary close to n−1/2.

The rest of this paper includes of five sections. Section 2 specifies the model. Section 3 presents method

and test statistics and in this section we study the asymptotic distribution under the null hypothesis and the

asymptotic local power of the test. Section 4 talks about Monte Carlo Evidence. And the last is conclusion.

2 Model specification

Consider a linear autoregressive distributed lag dynamic regression (AD) model:

α(0)(B)Yt = C + α(1)(B)X1t + · · · · · ·+ α(q)(B)Xqt + ut, (2.1)

where the α(j)(B) =
∑mj

l=0 αljB
l are polynomials of order mj in lag operator B associated with the dependent

variables Yt and the q exogenous variables Xjt, C is a constant, and ut is an unobservable disturbance. The

polynomial α(0)(B) is assumed to have all roots outside the unit circle, and is normalized by setting α00 = 1.

The Xjt is also assumed that to be covariance stationary with E(X2
jt) < ∞. Note that α0 = (α10, · · · , αm00)

′,

αj = (α1j , · · · , αmj)′ j=1, 2, 3,· · · , q. Then α = (C,α′0, · · · , α′q)′is a
∑q

j=0(mj + 1) × 1 vector consisting of

all unknown coefficients in (2.1). The model (2.1) can be estimated by (e.g) the ordinary least square

(OLS) method. Any form of serial correlation involves inconsistency of the OLS estimator for α and/or its

covariance matrix. It is well known that the serial correlation of {ut} may occur due to misspecification of

the model (2.1), such as omitting relevant variables, choosing to low lag order for Yt or the Xjt, or using
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inappropriate transformed variables. So the hypotheseses of interest are:

H0 : ρ(j) = 0 for all j 6= 0 v.s. Ha : ρ(j) 6= 0 for some j 6= 0,

where ρ(j) is autocorrelation of residues order j.

Hong (1996) proposed three classes of consistent one-sided tests for serial correlation of unknown form

for the residual of model (2.1). The tests are obtained by comparing a kernel-based normalized spectral

density estimator to the null normalized spectral density, using quadratic norm, the Hellinger metric, and

Kullback-Leiber information criterion respectively. Under the null hypothesis of no serial correlation, the

three classes of Hong test statistics are asymptotically N(0,1) or equivalent. The popular Box and Pierce

(1970)(BP) test is a special case of Hong tests. The BP test can be viewed as a quadratic norm based test

using truncated periodogram. Hong tests may be more powerful than the later because many other kernels

deliver the tests better power. In other word, in the Hong tests, the weight given to autocorrelation order j

is close to unity (the maximum weight) when j is small relative to n and the larger j is, the less weight is

given to ρ(j). By contrast, the Lagrange multiplier (LM) test of Breusch (1978), Godfrey (1978), BP (1970)

test whose the statistics are LM, QT respectively give the equal weight to ρ(j). Intuitively, this might not be

the optimal weighting because for most stationary processes the autocorrelation decay the zeros as the lag

increase. This difference may be used to explain the power of Hong test. In other word, the null distribution

of the Hong tests remains invariant when the regressors include lagged dependent variables. The LM and

BP statistics are the following:

QT = T

pn∑
j=1

r̂2
j , (2.2)

LM = nR2, (2.3)

where R2 issue from the regression MA or AR of the residues. Unfortunately, there is not an optimal choice

of pn, so the applicants often do these tests with different value of pn and reject the null hypothesis when

the later is rejected with some value of pn. This method may effect the performance of these tests. In the

next section, we will show that these tests are special cases of Hong tests.

By simulation study, Hong (1996) found that his tests have good power against an AR(1) process and a

fractionally integrated process. In particular, they have better power than LM test as well as BP test and

Ljung and Box (1978) test. However, like LM test and BP test, the power of Hong tests depends on the

choice of the parameter of the kernel. The power of these tests are higher with smaller parameter pn but

the level of the tests are better with large pn since the distribution of the tests under the null hypothesis is

derived under the assumption that pn tends to ∞ when n →∞. The fact that there is not an optimal choice

of the parameter of kernel, the performance of the tests may be effected by the comportment of users. The
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users often apply these tests with different values of pn and reject the tests when they are rejected for one

or some values of pn. This comportment makes the error of type I very high.

For the selection of the smoothing parameter, Hong (1996) recommend to use in practice the cross-validation

procedure of Beltrao and Bloomfield (1987) and Robinson (1991). However, this criteria is tailored for esti-

mation but not for testing purpose. In fact, there exists no optimal testing properties for such criteria. In

particular, it does not yield adaptive rate-optimal tests in the senses of Horowitz and Spokoiny (2001).

Many adaptive rate-optimal procedure are based on maximum approach, which consists in choosing as a

test statistic the maximum of studentized statistics associated with a sequence of smoothing parameter. The

approach is used in Horowitz and Spokoiny (2001) to deal with detection of misspecification for nonlinear

model with heteroscedastic errors. The disadvantage of this approach is that the critical value diverges as n

increase, so we have to simulate this value for each sample size.

In the next section, we propose some new classes of tests which permit to choose the smoothing parameter

from the data. This choice tailors testing purpose and yields our tests optimal and render our tests more

powerful and have a better performance than standard tests.

3 Method and test statistics

Suppose that {ut} is a stationary real-valued process with E(ut) = 0, autocovariance function R(j), auto-

correlation function ρ(j), and normalized spectral density function at zero frequencies

f(ω) = (2π)−1
+∞∑

j=−∞
ρ(j)cos(ωj) with ω ∈ [−π, π] (3.4)

The hypotheses of interest are:

H0 : ρ(j) = 0 for all j 6= 0 v.s. Ha : ρ(j) 6= 0 for some j 6= 0.

The null hypothesis H0 is strictly equivalent to f(ω) = f0(ω) = 1/(2π) for all ωε[−π, π]. Our test statistics

are based on the difference between f(ω) and f0(ω). If this difference is large enough, the null hypothesis will

be rejected. Let D(f1, f2) be a divergence measure for two spectral densities f1, f2 such that D(f1, f2) ≥ 0

and D(f1, f2) = 0 if and only if f1 > f2. The consistent test can be then based on D(f̂n; f0) where f̂n is

a kernel estimator of f. The following examples of D are used for measuring the difference of f from f0 :

Quadratic norm:

Q(f ; f0) =
[
2π

∫ π

−π

(f(ω)− f0(ω))2dω

]1/2

, (3.5)
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the Hellinger metric:

H(f ; f0) =
[
(f1/2(ω))− f

1/2
0 (ω))dω

]1/2

, (3.6)

and the Kullback-Leibler information criterion:

I(f ; f0) = −
∫

Ω(f)

ln(f(ω)/f0(ω))f0(ω)dω, (3.7)

where Ω(f) = {ω ∈ [−π, π]; f(ω) > 0} These measures are intuitively appealing and have their own merits.

The quadratic norm delivers a computationally convenient statistic that is simply a weighted average of

squared sample autocorrelations with the weights depending on the kernel. The Box and Pierce statistic

can be viewed as based on Q(f̂n, f0) with f̂n being a truncated periodgram. The Hellinger metric H(f ; f0)

is a quadratic norm between f1/2 and f
1/2
0 . Unlike Q(f ; f0), which gives the same weight to the difference

between f and f0 whether the smaller of the two is large or small, H(f ; f0) is relatively robust to outliers and

is thus particularly suitable for contaminated data (cf. Pitman (1979)). Finally, entropy-based tests have

an appealing information-theoretic interpretation.

Now, since f(ω) is unobservable, so we need to estimate it. Let α̂ be an estimator of α. Then the residual

of (2.1) is:

ût = α̂(0)(B)yt − ĉ− α̂(1)(B)X1t − · · · α̂(q)(B)Xqt (3.8)

An estimator of the normalized spectral density f(ω) is:

f̂(ω) = (2π)−1
n−1∑

j=−(n−1)

ρ̂(j)cos(ωj), (3.9)

with ρ̂(j) = R̂(j)/R̂(0) and R̂(j) = n−1
∑n

i=|j|+1 ûtût−|j|. A kernel estimator of f(ω) is given by:

f̂(ω) = (2π)−1
n−1∑

j=−n+1

k(j/pn)ρ̂(j)cos(ωj), (3.10)

where the bandwidth pn is an integer and pn → ∞, pn/n → 0 when n → ∞. As in Hong (1996), the

following conditions are imposed:

Assumption 3.1 k:R → [-1,1] is a symmetric function that is continuous at zeros and at all but a finite

number of points, with K(0)=1 and
∫∞
−∞ k2(z)dz < ∞

The condition that k(0)=1 and k is continuous at 0 imply that for j small relative to n, the weight given

to unity (the maximum weight) and the higher j is, the less weight is put for ρ(j). This is reasonable because

for most stationary processes, the autorocorrelation decays to zeros as the lag increases. The assumption A.1
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includes the Barlett, Daniell, general Tukey, and Parzen kernels which have compact support, i.e. k(z) = 0

for |z| > 1. For these kernels, pn is called the ”the lag truncation number”, because the lags of order j > pn

receive zero weight. In contrast, the Daniel and QS kernels are of unbounded support; here p is not a

“truncated point”, but determines the “degree of smoothing” for f̂n.

Hong (1996) proposed the standardized versions of Q2(f̂n, f0), H2(f̂n, f0), I(f̂n, f0), namely:

M1n = ((1/2)nQ2(f̂n; f0)− Cn(k))/(2Dn(k))1/2 (3.11)

=

n
n−1∑
j=l

k2(j/pn)ρ̂2(j)− Cn(k)

 /(2Dn(k))1/2, (3.12)

M2n = (2nH2(f̂n, f0)− Cn(k))/2Dn(k))1/2, (3.13)

M3n = (nI(f̂n, fo)− C(k))/(2Dn(k))1/2 (3.14)

where Cn(k) =
∑n−1

j=1 (1 − j/n)k2(j/pn) and Dn(k) =
∑n−1

j=1 (1 − j/n)(1 − (j + 1))k4(j/pn). For 3.13 and

3.14, we impose the following additional condition on k:

Assumption 3.2∫ π

−π

|k(z)|dz < ∞ and K(λ) = (1/2π)
∫ ∞

−∞
k(z)e−izλdz ≥ 0 for λ ∈ (−∞,∞).

This absolute integrability of k ensures that its Fourier transform K exists. Assumption 3.1, 3.2 includes

the Barlett, Daniel, Parzen, and QS kernel, but rules out the truncated and general Tukey kernel.

Under some regularity conditions, these statistics are asymptotically N(0,1). If the kernel used is a

truncated kernel, M1n is a standardized version of BP statistic.

Given pn → ∞ and pn/n → 0, then p−1
n Dn(k) =

∫∞
0

k4(z)dz. Thus, we can replace Dn(k) by pnDn(k)

without effecting the asymptotic distribution of M1n. Under some additional conditions on k and/ or pn

(see Robinson (1994, p.73)), we have p−1
n Cn(k) = C(k) + o(p−1/2

n ), where C(k) =
∫∞
0

k2(z)dz. So, in this

case Cn(k) can be replace by pnC(k). A more compact expression of M1n is then

M∗
1n =

n
n−1∑
j=1

k2(j/pn)ρ̂2(j)− pnC(k)

 /(2pnD(k))1/2. (3.15)

when k is a truncated kernel, i.e. k(z) = 1 for |z| ≤ 1 and 0 for |z|, we obtain the following

MT
1n =

n

pn∑
j=1

ρ̂2(j)− pn

 /(2pn)1/2, (3.16)

a generalized BP’s test when pn → α. On one hand, M1n is valid for the case in which the regressors include

also the lags of independent variables. On the other hand, in contrast to the truncated kernel, other kernels
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give the maximum weight (unity) to ρ̂ for j relative small to n and give less weight to higher j while the

truncated kernel puts the same weight to ρ2(j). Consequently, the M1n statistic may be more powerful than

BP statistic.

Under H0, MT
1n is asymptotically equivalent to

MR = (nR2 − pn)/(2p2
n), (3.17)

where R2 is the squared multi-correlation coefficient from AR(pn) regression

ût = β1ût−1 + β2ût−2 + ...βpn ût−pn + εt, (3.18)

where initial values ût−pn
= 0, 0 ≤ t ≤ pn. Hence, MT

1n can be viewed as a test for the hypothesis that the pn

coefficient of the AR(pn) model are jointly equal zero. Because any stationary invertible linear process with

continuous f(·) can be approximated well by a truncated AR model with sufficiently high order (cf. Berk

(1974)), so MR can capture all possible autocorrelations as long as more and more lags of ût are included

as the number of observations increases. When MR rejects H0, the usual t−statistic in (3.18) may provide

useful information about the pattern of serial correlation. The power of MR may be different from that of

MT
1n, because in general, they are not asymptotically equivalent under HA (see Hong (1996)).

By simulation, Hong (1996) showed that BP, MT
1n, MR and LM tests are much less powerful than tests

which are based on kernels other than the truncated kernel. This result confirms his remark that BP, MT
1n,

MR tests put equal weight for all pn sample autocorrelations but intuitively, this might not be optimal

because for most stationary processes the autocorrelation decays to zero as the lag increases. So the fact

that there are many other kernel but truncated kernel may give Hong (1996) tests better power than MT
1n,

MR and BP tests. LM tests of Breusch (1978) and Godfrey (1978) are asymptotically equivalent to BP test

under a static regression model, so LM tests are also less powerful than tests based on kernels rather than

the truncated kernel. By simulation, Hong also found that LM tests are more powerful than BP test against

an AR(1) alternative.

The power of MT
1n, MR, BP, LM and Hong (1996) statistics depends on the choice of pn. But there is

not an optimal choice of this parameter. To solve the problem for the choice of the smoothing parameter,

Hong (1996) proposes to use in practice the cross-validation procedure of Beltro and Bloomfiel (1987). This

procedure tailors for estimation, not for testing purpose. By simulations, Hong found that this procedure

produces an significant over-rejection at %5 level for the three tests. In practice, people often does these tests

with different values of pn and rejects the tests if the tests are rejected with an value of pn. This method

makes the error that the null hypothesis is rejected more often even if it is truth. That means that in this

case, standard critical value is not valid for these tests or the distribution of these tests under the hypothesis

null is not standard.
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In this paper, we propose three new classes of tests for serial correlation that are based on Hong (1996)

tests but the choice of pn is optimal data driven. This optimal choice may render our tests more powerful

and have a good performance. We didn’t find a paper in the literature which talks about the choice of the

statistics based on the spectral approach. But many adaptive rate-optimal tests are based on the maximum

approach, which consists in choosing as a test statistic the maximum of standardized statistics associated

with a sequence of smoothing parameters. Horowitz and Spokoiny (2001) proposed a test of a parametric

model of a conditional mean function against alternatives a non parametric model. This test is based on the

maximum approach. For this approach, the critical value diverges and we have to simulate critical value for

each sample size. Guerre and Lavergne (2004) and Guay and Guerre (2005) proposed data-driven smooth

tests for a parametric regression function. The smoothing parameter of these test statistic is selected through

a new criterion that favors a large smoothing parameter under the null hypothesis. The advantage of this

choice is than the distribution of the statistics under the null hypothesis is standard (normal distribution)

and this test detects local Pitman alternatives converging to the null at a faster rate than the one detected

by a maximum test.

Define

T̂1pn = (1/2)nQ2(f̂n; f)− Cn(k) (3.19)

T̂2pn
= 2nH2(f̂n; f0)− Cn(k) (3.20)

T̂3pn
= nI(f̂ ; f0)− Cn(k) (3.21)

Let P be a set of possible values of pn and Jn be the number of the elements of P. We have:

P = {pmin, pmin + 1, · · · · · · , pmax} , (3.22)

where pmin and pmax are chosen in order to make that Jn = pmax − pmin tends to →∞ when n →∞.

On a informal ground, the approach of Guerre and Lavergne (2004) favors a baseline statistic T̂ipn0 with

lowest variance among the T̂ipn
with i = 1, 2, 3. In our case, the approximation of the standard deviation

of T̂ipn is v̂pn =
√

2Dn(k) where Dn(k) is defined above. It is easy to demonstrate that 2Dn(k) obtains

minimal value when pn is equal pmin. Our proposed statistic is then the following:

Min(p̃n) = T̂ip̃n/(2Dn0(k))1/2, i = 1, 2, 3. (3.23)

where Dn0(k) =
∑n−1

j=1 (1− j/n)(1− (j + 1)/n)k4(j/1)pmin

p̃in = argmaxpn∈P

{
T̂ipn

− γnv̂pn,pn0

}
= argmaxpn∈P

{
T̂ipn

− T̂ipn0 − γnv̂pn,Pn0

}
(3.24)

where γn > 0 and v̂pn,pn0
=
√

2Dn(k) + 2Dn0(k)− 4Dn0,n, the approximation of asymptotic null standard

deviation of T̂ipn
− T̂ipn0 . Our criterion for the choice of the kernel parameter penalizes each statistic by a
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quantity proportional to its standard deviation while the criteria reviewed in Hart (1997) use larger penalty

proportional to the variance. Comparing our procedure to Hong (1996) test, our test inherits the power

properties of each T̂pn
, up to a term γnv̂pn,pn0 . Indeed, the definition of p̃n yields

T̂ip̃n
= max

pn∈P

{
T̂ipn

− γnv̂pn,pn0

}
+ γnv̂pn,pn0 ≥ T̂pn

− v̂pn,pn0 , (3.25)

for any pn ∈ P . As a sequence, a lower bound for the power of the test is:

P
(
T̂ip̃n ≥ v̂pn0Zα

)
≥ P

(
T̂pin ≥ v̂pn0Zα + γnv̂pn,pn0

)
, (3.26)

for any pn ∈ P and i = 1, 2, 3. Since v̂pn0,pn0 = 0, we have the following implication of 3.26

P
(
T̂ip̃n

≥ v̂pn0Zα

)
≥ P

(
T̂pn0 ≥ v̂ipn0Zα

)
, (3.27)

for any pn ∈ P . The last equation shows that our test is more powerful than Hong (1996).

3.1 Asymptotic null distribution

To establish the asymptotic null distribution of our test, we assume the following conditions:

Assumption 3.3 {ut} is identically and independently distributed (i.i.d) with E(ut) = 0, E(u2
t ) = σ2

0 et

E(u4
t ) = µ4 < ∞

Assumption 3.4 : n1/2(α̂− α) = OP (1)

Although most of papers suppose {ut} be normal, we assume that {ut} is i.i.d because in financial models,

it is well known that {ut} has highly leptokurtic distribution. Hong (1996) shows that under Assumption

A.1, A.3, A.4 and pn →∞, pn/n → 0, then M1n
d−→ N(0, 1). Moreover, if pn →∞, p3

n/n → 0. Then

M2n −M1n = op(1),M3n −M1n = op(1),M2n
d→ N(0, 1),M3n

d→ N(0, 1).

The asymptotic distribution under the null hypothesis of our new classes of tests is given in the two next

theorems.

Theorem 3.1 Suppose Assumption 3.1, 3.3 and 3.4 hold and pmin → ∞ and pmin/n → 0, when n → ∞.

Let γn →∞ with

γn ≤ (1 + η)
√

2 ln Jn, (3.28)

for some η > 0, then Pr (M1n(p̃n) ≥ zα)
p→ α with zα standard normal critical value.
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The theorem 3.1 is proved in two main steps. Firstly, we show that

P (p̃n 6= pmin) = P

(
max
pn∈P

T̂pn
− T̂pmin

v̂pn,pmin

)
(3.29)

goes to zero. That means that p̃n converges to pmin when n →∞. Then we show that T̂pmin
/v̂pmin

converges

to a standard normal.

Theorem 3.2 Suppose Assumption 3.1-4 hold. Let pn →∞, p3
n/n → 0. Then

(T̂1,pn
− T̂2,pn

)/v̂pn,pmin
= op(1), (T̂1,pn

− T̂3,pn
)/v̂pn,pmin

= op(1), ∀pn ∈ P,

and Pr (M2n(p̃2n) ≥ Zα)
p→ α, Pr (M3n(p̃3n) ≥ Zα)

p→ α with Zα, standard normal critical value.

The data choice driven of the kernel parameter favors pmin under the null hypothesis. Indeed, since

T̂i,pn
− T̂i,pmin

is order of v̂pn,pmin
under H0, p̃n = pmin asymptotically under H0 if γn diverges fast enough.

Hence the null limit distribution of our tests is the one of T̂i,pmin/v̂pmin , that is standard normal, our tests

have bounded critical value. This is an advantage of our statistics in comparison with the statistics using

approaches maximum. Under the null hypothesis, our new classes of tests is equivalent to the classes of tests

Min, i = 1, 2, 3 of Hong (1996), but the fact that T̂i,pn
/v̂pmin

is larger than T̂i,pn
/v̂pn

under the alternative

hypothesis will do our tests more powerful at no cost.

3.2 Asymptotic local power

In this section, we consider firstly Pitman local alternatives and then we examine general alternative with

an unknown smoothness.

3.2.1 Fixed alternative

Consider Pitman local alternatives.

Han : f0
n(ω) = f0(ω) + ang(ω), ω ∈ [−π, π], (3.30)

where an → 0 as n →∞ and g: R → R is a symmetric periodic (with periodicity 2 π) bounded continuous

function with
∫ π

−π
g(ω)dω = 0. This condition ensures that f0

n is a normalized spectral density for all n

sufficiently large. an tends to 0 at a rate slower than n1/2. Define:

T̂ a
1pn

= (1/2)nQ2(f̂n; f0
n)− Cn(k), (3.31)

T̂ a
2pn

= 2nH2(f̂n‘; f0
n)− Cn(k), (3.32)
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T̂ a
3pn

= nI(f̂n; f0
n)− Cn(k), (3.33)

and P̃ipn
satisfies

p̃in = argmaxpn∈P

{
T̂ a

ipn
− γnv̂pn,pn0

}
= argmaxpn∈P

{
T̂ a

ipn
− T̂ a

ip0
− γnv̂pn,pn0

}
(3.34)

where γn > 0 and v̂pn,pn0 =
√

2Dn(k) + 4Dn0(k)− 2Dn0n the approximation of asymptotic null standard

deviation of T̂ a
ipn

− T̂ a
ip0

Theorem 3.3 Suppose the assumption A.1(a), A.2, A.3 hold and pn →∞, pn/n → 0, an = n1/2(ln(lnn))1/4.

Then

lim
n→∞

Pr

(
T̂1p̃n

v̂pmin

≥ zα

)
= 1.

where p̃n satisfies 3.34. If in addition assumption A.1(b) hold and p3
n/n → 0, then

lim
n→∞

Pr

(
T̂2p̃n

v̂pmin

≥ zα

)
= 1.

and

lim
n→∞

Pr

(
T̂3p̃n

v̂pmin

≥ zα

)
= 1.

When pn0 = ln(lnn), the equation (3.27) allows to establish the theorem 3.3. From this inequality, the test

is consistent if T̂ a
pn0

− v̂pn0 diverges to infinity in probability. Since an = n1/2(ln(lnn)1/4, our test detects

the Pitman local alternatives approaching the null at the faster rate than that in Horowitz and Spokoiny

(2001) whose rate is an = n1/2(ln(lnn)1/2. But these rates are smaller than parameter tests.

We now want to find the optimal kernel which maximizes the power of our tests over some proper class

of kernel functions. Let r be the largest integer such that

k(r) = limz→0(1− k(z))/ |z|, ,

exists, and is finite and nonzero. We consider a class of kernel with r=2:

k(τ) = k(.) satisfies Assumptions 3.1 with k(2) = τ2/2 > 0.

The class k(τ) includes the Daniell, Parzen, and QS kernels, but rules out the truncated, Barlett, and general

Tukey kernels.

11



Theorem 3.4 Suppose conditions of Theorem 3.3 hold and T a
ip̃n

/v̂pmin
are defined as in Theorem 3.3. The

under Han and an = n1/2(ln(lnn))1/4, the Daniel kernel kD(z) = sin(
√

3τz/(
√

3τz)), z ∈ (−∞,∞), maxi-

mizes the lower bound for the power of Tip̃n
/v̂pmin

over k(τ).

The Daniel kernel is different from the QS kernel, which is optimal within k(τ) in the context of spectral

density estimation using various mean squared error criteria (e.g Andrew (1991) and Priestley (1962)). For

hypothesis testing, the QS kernel can be worse than many other kernels. Some kernels have close value of

D(k)1 so we expect little difference in power among these kernel if the same p̃n is chosen.

3.2.2 General alternatives

Now, we consider general alternatives with unknown smoothness. Define the departure δ(ω) from the null

as:

δ(ω) = f(ω)− f0(ω).

To define the alternative hypothesis, the nonparametric minimax approach requires to focus on some classes

of smooth functions, as explained by Ingster (1993). We then consider deviations from the null which are in

smoothness classes defined as follows. Let the Hölder class C(L, s) be the set of f(·) with:

C(L, s) = {δ(·); |δ(ω1)− δ(ω2)| ≤ L|ω1 − ω2|s for all ωi ∈ [−π, π], i = 1, 2} for s ∈ (0, 1],

C(L, s) = {δ(·); thebsc − th partial derivatives of δ(·) are in C(L, s− bsc)} for s > 1.

Hence the smoothness class C(L, s) is defined for all L > 0 and s > 0. The composite nonparametric

alternative that the function f(ω) is separated away from zero is assumed in L2 norm. Hence, we consider

the following alternative:

H1(ρ;L, s) =
{
δn(·) = fn(·)− f0(·); δn(·) ∈ C(L, s), ‖δ(·)‖ ≥ Chρ2

}
.

The minimax adaptive framework evaluates tests uniformly over alternatives at distance ρ from the null with

unknown smoothness index (L, s). Such alternatives allows for a general shape of δ(·) with narrow peak and

valleys that may depend upon the number of observations. In the adaptive approach, the rate ρ from the

null depends upon the unknown index s. Spokoiny (1996) show that the optimal adaptive rate is:

ρn(s) =

(√
ln lnn

n

) 2s
4s+1

,

which is slower than the parametric rate n−1/2.

1The Daniell, Pazen, and QS kernels have D(k) = 0.6046/τ , 0.6627/τ , and 0.6094/τ .
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Theorem 3.5 Consider a sequence of {fn(ω)}n≥1 such that some unknown s > 0 and L > 0, fn(ω)−f0(ω) ∈

H1(ρn;L, s) for all ω ∈ [−π, π] and all n. If γn is of exact order ln lnn, the test is consistent, namely

lim
n→∞

Pr

(
T̂ip̃n

v̂pmin

≥ zα

)
= 1.

The proof of this theorem is based upon the power bound (3.26). From this inequality, the test is

consistent if T̂ a
ipn

− v̂pn0Zα − γnv̂pn,pn0 converges to infinity in probability for a suitable choice of parameter

pn. The optimality of our tests is a great advantage in comparison with Hong test and standard tests for

serial correlation.

4 Monte Carlo Evidence

In this section, we present the Monte Carlo evidence of our tests to demonstrate that they are more powerful

than some commonly used tests in practice and our choice of the parameter of the kernel is data driven and

optimal. Consider the data generating process

Yt = c + α1Yt−1 + α2Xt + µt (4.35)

where the exogenous variable Xt = 0.8Xt−1 + vt and the vt are NID(0,3). We set α = (c, α1, α2)′ = (1,

0.5, 0.5)’. The sample sizes used are n = 64, 128. For each n, we set the initial value of Y equal zero and

generate 2n + 1 observations using (4.35) but we discard the first n + 1 observations to reduce the effects of

initial value. Our simulation programs are written on matlab language. For the statistics M2n,M3n, we use

approximation methods to calculate the integral. We compare our tests with those of BP, LB, and Breusch

(1978), Godfrey (1978) and Min statistic of Hong (1996). The following kernels are used for Min statistic,

i = 1, 2, 3 of Hong (1996) and for our statistics:

Daniell (DAN): k(z) = sin(πz)/πz

Parzen(PAR) : k(z) =


1− 6(πz)2 + 6|πz/6|3, |3| ≤ 3/π

2− (1− |πz/6|)3, 3/π ≤ |z| ≤ 6/π

0, otherwise;

Barlett(BAR) : k(z) =

 1− |z|, |z| ≤ 1

0, otherwise;

QS : k(z) =
(
9/(z2π2)

){
sin(

√
5/3πz)/(

√
5/3πz)− cos(

√
5/3πz)

}
;
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Truncated(TRON) : k(z) =

 1, if |z| ≤ 1

0, otherwise;

Here, DAN, PAR, and QS belong to k(π/
√

3), BAR belongs to k(τ). For Hong, BP, LB and LM tests, to ex-

amine the effects of using different pn, three different values of pn are used: (i) pn = [ln(n)]; (ii) pn = [3n0.2];

(iii) pn = [3n0.3], where [a] denotes the integer closest to a. These rates are pn = 4, 7, 10 for n = 64; pn=5,

8, 13 for n=128. The ln(n) rate, up to some proportionality, is the rate delivered by information based

criteria for (3.18). The rate n0.2 up to some proportional, is the optimal rate minimizing the mean squared

error of f̂n when the kernel with r=2 is used; and the rate n0.3 is close to upper bound on pn for M2n and M3n.

For BP, LB, LM tests, we use the same pn where BP = n
∑pn

j=1 ρ̂2(j) and LB = n(n + 2)
∑pn

j=1(n −

j)−1ρ̂2(j). Because there is a lag of dependent variable in (4.35), BP and LB are not valid, but we still treat

BP and LB as asymptotically χ2
pn−1 under H0. The LM statistic is LM = nR2, where R2 is obtained from

the OLS regression of ût on 1, Yt−1, Xt, ût−1, . . . , ût−pn
. The LM statistic is asymptotically χ2

pn
.

For our tests, we set the band {pmin, . . . , pmax} with pmin = max(round(ln(n)), 2)2 and pnmax = [6 lnn].

We choose η in (3.28) equal 0.5. By simulation, we see that the value of η has not much effect on the power

of the tests.

Let εt be NID(0,1) and et be uniform on [0,1]. For ut, we consider three processes: (a) ut = εt; (b)

ut = 3(et − 0.5); (c) ut = 0.3ut−1 + εt. Both (a) and (b) permit us to examine size performances under

normal and nonnormal (uniform) white noise error. Process (c) is the widely AR(1) which permit us to

examine the power of tests.

Table 1 presents rejection rates (in percentage) under normal white noise error at 10% and 5% nominal

levels, based on 5000 replications of standard tests and Hong (1996) tests. We see that for all tests, faster

pn gives better size. Among the three tests: LM, BP, LB, LM test is the best with reasonable size when

n = 64. But when n increases, it exhibits underrejection. LB test has strong overrejection rate for all pn.

The rejection rate of BP decreases when pn increases and have better size than LB test. These findings differ

from the literature. But BP test exbihits also a little overrejection. Hong tests with the kernel other than

the truncated kernel have more resonable size than LB, BP et LM tests and they have reasonable size at the

5% but have greater difficulties of getting it right at the 10% level. For each statistique Min, i = 1, 2, 3, the

kernels Daniell, Parzen, and Quadratic-Spectral perform similarly but Barlett performs slightly differently.

The statistics Min, i = 1, 2, 3, with this kernel reject the hypothesis null a little less often than the other

kernels other than the truncated kernel. The truncated kernel performs very badly. Min, i = 1, 2, 3, with

truncated kernel have over rejection at 5% levels. In one word, Hong tests with the kernel other than

2Since Dn(k) = 0 when pn = 1 for Bartlett kernel, pmin must be higher than 1.
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truncated kernel have better size than other standard tests. Table 2 presents rejection rates under nonnormal

(uniform) white noise errors. The obtained results are similar to the normal white noise errors case for BP,

LB and LM tests. For Min, i = 1, 2, 3, with kernels other than truncated kernel, the null hypothesis is a

little overrejected at 5%.

However, the power of Hong tests and other tests depends on the choice of pn and there is not an optimal

choice for this parameter. So users often apply these tests with different values of pn, observe the results

and decide to reject these if the p-value is less than 5% for one value of pn. Tables 2, 3 present rejection

rate of BP, LB, LM and Min, i = 1, 2, 3 tests when the tests are performed with pn = 2, . . . , 15 and the tests

are rejected if they are rejected with one or many values of pn. The obtained results are interesting. This

strategy leds to an important rate of overrejection. The BP, LM, LB tests have great difficulties of getting

the size of 5% and 10% levels. LM and BP tests perform similarly while LB test has more overrejection.

Although Min, i = 1, 2, 3 tests have overrejection, they have much better size than the other tests. The

kernels Daniell, Parzen, and Quadratic-Spectral perform similarly but Barlett performs slightly differently.

The rejection rate under normal and non-normal white noises of our new classes of tests is presented

in Tables 6, 7. They have reasonable sizes at the 5% level for all kernel other than the truncated kernel

but they exhibit under rejection at 10% level. The three kernels: Parzen, Daniell, and Quadratic-Spectral

perform similarly but Barlett rejects the test less often. The truncated kernel performs very badly. The

table 6 presents also the percentage that p̃n = pnmin of the new classes of tests. We see that for all kernels

other than truncated kernel, more 98% p̃n chosen is equal pnmin and that this percentage is higher when

the sample size is larger. This confirms our demonstration of theorem 3.1 that when p̃n convegers pnmin

when n →∞.

Table 5 reports the power of the standard tests and Min, i = 1, 2, 3 tests under AR(1) alternative.

1000 replications are applied for each test and this Table presents the percentage of rejection under AR(1)

alternative for different value of pn. For all test, slower pn gives better power.

The power of BP and LB tests is higher than LM tests and LB is the most powerful test among the three

tests. Min, i = 1, 2, 3 tests have the much higher power than the LM, BP, LB test. Truncated kernel delivers

the power much worse than the other kernels.

The rejection rate under AR(1) alternative of our tests is presented in table 8. We see that our new

classes of tests are more powerful than Min, i = 1, 2, 3 tests for any value of pn.

Hong (1996) applied Beltro and Bloomfield (1987) procedure which permits to choose pn via data-driven

methods. This method is called cross-validation method which is based on pseudo log likelihood type

criterion under the Gaussian case. Hong found that cross-validation works well at 10% level but it has a
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little overrejection at 5% level. Under AR(1) alternative, the cross-validation gives better power than the

determined rules in term of asymptotic critical value and its empirical based power is good. When 1000

simulations is applied, the number of rejection under AR(1) alternatvive at 5% is between 699 and 719 (713

and 742) for M1n, 709 and 725 (727 and 745) for M2n, 698 and 718 (735 and 750) for M3n if empirical critical

value (asymptotic critical value) is used (see also table 1, 2, 3 of Hong (1996)).

The rejection rate under AR(1) alternative of our tests is presented in Table 8. We see that our new

classes of tests are more powerful than Min, i = 1, 2, 3 tests for any value of pn and they are also much more

power than cross-validation methods presented in Hong (1996).

To summarize, (i) For our new classes of tests and Min, i = 1, 2, 3 tests, the choice of the kernels (other

than truncated kernel) has a little impact on the size; (ii) The truncated kernel, a generalized BP test, has

lower power and worse size than the other kernels; (iii) The choice of pn has a signification impact on size

and power of LM, BP, LB and Min, i = 1, 2, 3 tests. Faster pn gives better size but slower pn delivers better

power. However, there is not an optimal choice of pn, this choice makes the tests have a bad size and in

this case, the standard critical values or the distribution of these tests under the hypothesis null is not valid;

(iii)The new classes of tests have better power than the other tests against AR(1) alternative for all fixed

pn.

5 Conclusion

This paper proposes three new classes of tests for serial correlation of unknown form for the residuals from a

linear dynamic regression model. Like Hong (1996) test, the tests are based on comparison between a kernel-

based spectral density estimator with the null spectral density, using a Quadratic norm, Helling metric, and

Kullback information criterion respectively. Under the null hypothesis, the asymptotic distributions of our

tests are N(0,1) and remain invariant when the regressors include lagged dependent variables. The first

advantage of our tests in comparison to Hong tests and other tests for serial autocorrelation is that our tests

permit optimal data driven choice of pn, the parameter of kernels. The criterion for the choice of the kernel

parameter penalized each statistic by quantity proportional to its standard deviation. Due to this choice, our

tests are more powerful than Hong tests and than other tests and they are adaptive rate optimal in the sense

of Horowitz and Spokoiny (2001). The fact that our statistics are divided by the minimum variance increases

also the power of the tests. Our tests detect the Pitman local alternative at the rate of ln(lnn)n−1/2. We

find also that the choice of kernels affects a little on the power of our tests and the Daniell kernel gives the

highest power bound for power of our tests. By simulation, we find that our tests have good level at 5%

and they are more powerful than LM, BP, LB and Hong tests for determined fixed pn and for pn chosen by
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cross-validation method of Beltro and Bloomfield (1987) under AR(1) alternative.
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Appendix

Proof of Theorem 3.1

First, we need to show

P (pn 6= pmin) = P

(
max
pn∈P

∣∣∣∣∣ T̂pn − T̂pmin

v̂pn,pmin

∣∣∣∣∣ > γn

)

goes to zero. Let η be as in condition (20) of Theorem 2.

P (pn 6= pmin) = P

(
max

pn∈Ppmin

∣∣∣∣∣ T̂pn
− T̂pmin

v̂pn,pmin

∣∣∣∣∣ > γn

)
≤
∑

pn∈P

P

(∣∣∣∣∣ T̂pn
− T̂pmin

v̂pn,pmin

∣∣∣∣∣ > γn

)

≤
∑

pn∈P

P

(∣∣∣∣∣ T̂pn
− T̂pmin

v̂pn,pmin

∣∣∣∣∣ > γn

1 + η

)
+ op(1)

≤
√

2(1 + η)√
πγn

exp

(
−1

2

(
γn

1 + η

)2

+ lnJn

)
+ op(1) = op(1).

by condition 3.28 where the last inequality holds by Mill’s ratio inequality and γn →∞ when n →∞.

We now have to show that T̂pn
/v̂pmin

converges to a N(0, 1). It is easy to demonstrate that M̂pn
has

minimum variance when pn = pmin. Then pn = pmin. When n →∞, pmin →∞ but pmin/n → 0, following

the Theorem 1 of Hong (1996), T̂pn/v̂pn0 converges to N(0,1). This is sufficient to establish Theorem 3.1.

Proof of Theorem 3.2

Hong (1996) demonstrated that given p3
n/n → 0

∣∣∣∣2H2(f̂n, f0)−
1
2
Q2(f̂n, f0)

∣∣∣∣ = op(p1/2
n /n)

and ∣∣∣∣I(f̂n, f0)−
1
2
Q2(f̂n, f0)

∣∣∣∣ = op(p1/2
n /n)

It follows that T̂2pn
− T̂1pn

= op(p
1/2
n ), T̂2pn

− T̂1pn
= op(p

1/2
n ), ∀pn ∈ P .

T̂2pn − T̂1pn

v̂pn,pn0

=
op(p

1/2
n )√∑n

j=1(1− j/n)(1− (j + 1)/n) [k2(j/pn)− k2(j/pn0]
2

=
op(p

1/2
n )

(
√

pn −
√

pn0)
√

2D(k)
= op(1),

T̂3pn
− T̂1pn

v̂pn,pn0

=
op(p

1/2
n )√∑n

j=1(1− j/n)(1− (j + 1)/n) [k2(j/pn)− k2(j/pn0]
2

=
op(p

1/2
n )

(
√

pn −
√

pn0)
√

2D(k)
= op(1),
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given pn →∞, and pn/n → 0, pnDn(k) → D(k) =
∫∞
0

k(z)dz. So

T̂2pn − T̂1pn

v̂pn,pn0

= op(1).

T̂3pn
− T̂1pn

v̂pn,pn0

= op(1).

And then we demonstrate the last part of this theorem.

P (p̃2n 6= p2n0) = P

(
max
pn∈P

∣∣∣∣∣ T̂2pn
− T̂2pn0

v̂pn,pn0

∣∣∣∣∣ ≥ γn

)

≤
∑

pn∈P

P

(
max
pn∈P

∣∣∣∣∣ T̂1pn
− T̂1pn0

v̂pn,pn0

∣∣∣∣∣ ≥ γn

)
+ op(1)

≤
√

2(1 + η)√
πγn

exp

(
−1

2

(
γn

1 + η

)2

+ lnJn

)
+ op(1) = op(1).

P (p̃3n 6= p3n0) = P

(
max
pn∈P

∣∣∣∣∣ T̂3pn
− T̂3pn0

v̂pn,pn0

∣∣∣∣∣ ≥ γn

)

≤
∑

pn∈P

P

(
max
pn∈P

∣∣∣∣∣ T̂1pn
− T̂1pn0

v̂pn,pn0

∣∣∣∣∣ ≥ γn

)
+ op(1)

≤
√

2(1 + η)√
πγn

exp

(
−1

2

(
γn

1 + η

)2

+ lnJn

)
+ op(1) = op(1).

We now have to show that T̂pn
/v̂pmin

converges to a N(0, 1). It is easy to demonstrate that M̂pn
has minimum

variance when pn = pmin. Then pn = pmin = ln(ln n). When n →∞, pmin →∞ but pmin/n → 0, following

the Theorem 1 of Hong (1996), T̂pn/v̂pn0 converges to N(0,1). This is sufficient to establish Theorem 3.2

Proof of Theorem 3.3

We have the following

Q2(f̂n, f0
n) = 2π

∫ π

−π

[
f̂n(ω)− f0(ω)− ang(ω)

]2
dω =

2π

∫ π

−π

[
(f̂n(ω)− f0(ω))2 − 2an(f̂n(ω)− f0(ω))g(ω) + a2

ng2(ω)
]
dω

Hong (1996) found that (f̂n(ω)−f0(ω))g(ω = Op(n−1/2) when pn →∞, pn/n → 0. an =
(
n−1

√
ln(lnn)

)1/2

.

Then: an(f̂n(ω)− f0(ω))g(ω) = Op(n−1(ln(lnn))1/4).

So,

Q2(f̂n, f0
n) = Q2(f̂ , f0

n) + Op((ln(lnn))1/4) + n−1
√

ln(lnn)2π

∫ π

−π

g2(ω)dω.
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Then,

T̂ a
1pn

= T̂1pn
+ Op(ln(lnn))1/4 +

√
ln(lnn)2π

∫ π

−π

g2(ω)dω.

We have

T̂ a
1pn0

− v̂pn0Zα = T̂1pn0 − v̂pn0Zα + Op(ln(lnn))1/4 +
√

ln(lnn)2π

∫ π

−π

g2(ω)dω.

By theorem 3.1, we have T̂1pn0 − v̂pn0Zα = op(1). So, T̂ a
1pn0

− v̂pn0Zα
p→∞.

The result for T̂ a
2p̃n

/v̂2pn0 and for T̂ a
3p̃n

/v̂3pn0 follow because it is easy to show that

T̂2pn
− T̂1pn

v̂pn,pn0

= op(1),

T̂3pn − T̂1pn

v̂pn,pn0

= op(1),

using anologous proof of theorem 3.2.

Proof of Theorem 3.4

The equation (3.27) gives us the lower bound for the power of our tests:

P
(
T̂ a

pn0
≥ v̂ipn0Zα

)
,

The theorem 5 of Hong (1996) shows that the Daniell kernel maximizes the power of Ma
jn over k(τ). That

means also that the Daniell kernel maximizes the lower bound of for the power of our tests. (Q.E.D).

Proof of Theorem 3.5

T̂ a
1pn

=
1
2
n2π

∫ π

−π

(δ(ω))2dω − Cn(k)

We have

T̂ a
1pn

− γnv̂pn,pn0 − Zαv̂pn0 ≥ −γnv̂pn,pn0 − Zαv̂pn0 + Op(2π2nρ2)

= −Op(γn
√

pn) + Op(2π2nρ2)

= Op

[
2π2n

(
n−1

√
ln(lnn)

) 4s
4s+1

]
−Op(γn

√
pn)

= Op

[
2π2n

(
n−1(ln(lnn))2s

) 1
4s+1 − γn

√
pn

]
,
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using ρ = (n−1
√

ln(lnn))
2s

4s+1 . Take pn = Op(ln(lnn)) and γn = ln(lnn), we have

T̂ a
1pn

− γnv̂pn,pn0 − Zαv̂pn0 ≥ Op

[
2π2n

(
n−1(ln(lnn))2s

) 1
4s+1 − (ln(lnn))3/2

]
= ∞,

because limn→∞
2π2n(n−1(ln(lnn))2s)

1
4s+1

(ln(lnn))3/2 = ∞ using Taylor regle. The result for T̂ a
2p̃n

/v̂2pn0 and for T̂ a
3p̃n

/v̂3pn0

follow because it is easy to show that

T̂2pn
− T̂1pn

v̂pn,pn0

= op(1),

T̂3pn − T̂1pn

v̂pn,pn0

= op(1),

using anologous proof of theorem 3.2.
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Table 1: Rejection rate in percentage under normal white noises of standard tests

n 64 128

pn 4 7 10 5 8 13

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

BP 07.34 12.99 05.24 10.49 04.65 08.57 06.69 12.87 05.85 11.30 05.13 09.50

LB 09.47 16.56 7.57 14.05 08.38 13.74 7.77 14.24 6.85 13.73 06.80 12.89

LM 05.36 12.18 05.06 10.26 03.84 08.52 05.02 10.36 04.72 10.44 03.44 08.82

Hong test

- DAN 04.16 06.46 04.88 07.64 04.88 08.31 04.14 06.18 04.64 07.40 05.45 08.40

- PAR 04.37 06.62 04.83 07.64 05.60 08.52 04.26 06.50 04.66 07.64 05.52 08.43

M1n - QS 04.18 06.60 04.80 07.62 05.46 08.40 04.14 06.18 04.60 07.16 05.32 08.38

- BAR 04.06 06.14 04.58 06.98 05.03 07.80 03.88 05.84 04.34 07.05 05.09 07.78

- TRON 05.54 08.64 06.72 10.16 06.40 09.62 05.56 08.60 06.26 09.68 06.46 10.02

- DAN 04.82 07.04 05.12 08.42 05.52 08.88 04.82 06.82 04.56 07.54 05.82 09.06

- PAR 04.86 07.06 05.14 08.00 04.64 08.36 04.56 06.94 04.54 07.54 05.20 08.56

M2n - QS 04.14 06.50 04.96 08.30 04.74 07.56 04.60 07.06 04.14 07.38 05.56 09.02

- BAR 04.40 06.70 04.46 07.36 04.58 07.78 04.36 06.30 04.58 06.38 04.78 07.76

- TRON 08.16 11.56 10.56 14.92 12.52 17.70 07.26 10.60 08.46 12.06 15.48 10.78

- DAN 05.38 07.84 06.32 09.32 07.32 10.30 04.84 07.20 05.28 08.42 07.16 10.50

- PAR 05.22 07.70 06.14 09.48 06.66 09.94 04.74 07.36 05.72 08.76 06.22 09.60

M3n - QS 04.62 07.06 06.14 09.32 04.72 07.58 04.86 07.36 05.06 07.98 06.34 10.04

- BAR 04.64 07.04 04.94 07.96 05.36 08.48 04.36 06.90 04.74 07.58 05.20 08.32

- TRON 09.76 13.86 11.62 16.66 09.80 15.00 08.82 12.14 10.42 14.22 12.48 17.84
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Table 2: Rejection rate in percentage under normal white noise of standard tests when the

parameter of the kernel is chosen from 2 to 15

n 64 128

5% 10% 5% 10%

BP 25.76 40.84 22.94 40.44

LB 18.52 33.26 21.02 35.54

LM 19.10 34.48 16.92 30.46

Hong test

- DAN 09.48 14.14 09.32 13.48

- PAR 9.72 14.26 09.40 13.50

M1n - QS 09.50 14.06 09.36 13.26

- BAR 08.66 12.74 08.28 12.06

- TRON 15.38 22.50 16.40 23.12

- DAN 08.70 13.36 09.92 15.30

- PAR 08.04 12.46 09.44 14.16

M2n - QS 08.34 12.86 09.66 14.70

- BAR 07.00 11.00 08.66 12.60

- TRON 29.04 38.24 26.08 34.54

- DAN 10.66 16.16 12.26 18.56

- PAR 09.58 14.58 10.36 15.40

M3n - QS 10.02 15.42 10.72 15.98

- BAR 07.60 11.72 09.04 13.08

- TRON 35.98 45.08 31.20 41.72
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Table 3: Rejection rate in percentage under non-normal (uniform) white noises of standard

tests

n 64 128

pn 4 7 10 5 8 13

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

BP 07.06 13.84 07.68 14.44 08.10 14.48 06.84 13.14 06.68 12.02 05.66 10.88

LB 08.98 16.38 09.02 14.78 08.42 15.22 07.84 15.14 07.68 14.44 8.10 14.48

LM 06.44 12.28 05.12 11.26 03.98 10.06 05.80 10.62 04.42 10.68 03.22 08.80

Hong test

- DAN 04.56 06.50 05.16 07.92 05.40 08.68 04.14 06.24 05.62 08.08 05.94 08.98

- PAR 04.50 06.84 05.36 08.00 05.42 08.98 04.16 06.44 05.20 08.34 06.12 09.42

M1n - QS 04.50 06.48 05.14 07.88 05.50 08.98 04.22 06.28 05.18 08.08 05.90 08.96

- BAR 04.20 06.16 04.90 07.32 05.06 08.02 04.06 05.96 04.82 07.66 05.40 08.54

- TRON 06.02 08.84 06.86 10.18 06.34 10.44 05.60 09.04 06.08 09.68 07.16 10.42

- DAN 05.00 07.20 06.36 09.62 06.68 09.88 04.74 07.42 05.72 08.82 06.82 10.40

- PAR 04.92 07.30 05.96 08.96 06.10 09.16 04.66 07.52 05.20 08.48 06.46 09.60

M2n - QS 04.82 07.14 06.16 09.20 06.10 09.48 04.70 07.30 05.42 08.46 06.60 09.96

- BAR 04.44 06.72 05.28 08.70 05.30 08.26 04.48 06.82 04.80 07.86 05.94 09.36

- TRON 10.12 13.42 12.18 16.82 12.50 18.18 07.34 10.96 08.76 13.12 12.18 16.82

- DAN 05.34 07.90 07.48 11.28 08.34 12.00 5.10 07.86 06.26 09.36 07.94 11.82

- PAR 05.36 07.86 07.00 10.72 07.52 10.86 04.98 07.88 05.80 09.18 07.36 10.88

M3n - QS 05.16 07.52 07.12 10.92 07.86 10.86 04.88 07.72 05.90 09.18 07.60 11.34

- BAR 04.64 06.90 05.70 09.04 06.04 09.40 04.60 06.98 05.20 08.16 06.36 9.82

- TRON 11.14 15.16 12.00 17.26 10.28 15.36 08.76 12.70 10.62 15.38 13.70 19.44
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Table 4: Rejection rate in percentage under nonnormal (uniform) white noise of standard tests

when the parameter of the kernel is chosen from 2 to 15

n 64 128

5% 10% 5% 10%

BP 18.20 33.14 24.98 41.62

LB 18.20 33.14 21.02 36.66

LM 19.06 34.88 17.62 33.36

Hong test

- DAN 10.10 14.36 09.26 13.80

- PAR 10.38 14.58 09.38 13.86

M1n -QS 10.08 14.32 09.04 13.70

- BAR 09.08 12.80 08.00 12.40

- TRON 16.68 24.08 16.42 24.40

- DAN 10.34 15.50 10.16 14.80

- PAR 09.56 14.22 09.42 13.92

M2n - QS 10.02 15.02 09.74 14.34

- BAR 07.98 12.36 07.98 12.36

- TRON 31.40 40.14 31.40 40.14

- DAN 12.58 18.16 12.16 18.08

- PAR 11.44 16.18 10.56 15.44

M3n - QS 12.08 17.18 10.82 15.68

- BAR 08.94 13.42 08.52 12.84

- TRON 37.56 46.58 33.48 42.68
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Table 5: Rejection rate in percentage under AR(1) alternative of standard tests

n 64 128

pn 4 7 10 5 8 13

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

BP 25.46 37.35 18.15 28.79 14.84 23.08 47.61 62.28 36.99 50.84 29.20 41.09

LB 28.54 41.79 23.63 34.47 21.36 30.93 50.63 63.10 40.66 53.81 34.39 45.82

LM 23.85 36.63 15.07 27.20 10.14 20.72 47.96 61.15 37.00 52.38 25.11 37.49

Hong test

- DAN 32.71 39.48 28.32 35.13 25.70 32.06 65.10 71.70 57.24 64.40 50.09 58.10

- PAR 31.53 38.44 27.40 34.29 24.94 31.24 65.54 70.30 55.75 62.78 49.60 57.20

M1n - QS 30.60 36.70 24.50 31.70 26.30 32.30 65.20 71.50 55.10 62.30 50.90 58.10

- BAR 33.34 39.79 30.00 36.84 27.61 34.14 66.30 70.30 61.26 67.63 56.00 63.40

- TRON 20.80 27.30 17.30 24.30 19.10 25.60 43.80 52.50 36.90 44.70 34.50 42.40

- DAN 35.40 41.50 31.60 38.20 27.40 34.40 63.80 71.40 58.70 65.80 58.70 51.60

- PAR 34.80 41.50 26.30 32.40 24.80 32.50 65.10 70.20 58.40 66.10 47.90 54.80

M2n - QS 35.40 41.50 31.30 37.90 28.80 35.80 65.80 72.00 58.40 66.10 44.90 56.20

- BAR 36.10 43.80 32.40 39.00 28.80 35.80 66.90 73.20 60.50 67.50 54.50 62.70

- TRON 28.40 34.10 25.40 32.10 26.90 34.10 47.60 55.90 40.00 50.30 36.60 44.90

- DAN 36.70 43.30 31.20 39.30 31.00 37.30 66.10 72.70 59.60 67.20 50.60 59.10

- PAR 36.20 40.80 31.20 39.30 29.50 35.20 65.90 71.10 57.80 66.10 49.70 58.70

M3n - QS 37.00 42.50 33.60 40.10 30.70 36.70 66.00 72.50 59.40 67.20 48.80 58.20

- BAR 36.20 41.90 29.80 35.80 30.50 37.80 67.20 73.90 67.30 67.30 63.80 55.90

- TRON 28.40 34.10 30.20 36.90 28.20 34.40 24.40 32.60 43.50 53.60 41.10 51.20
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Table 6: Rejection rates in percentage under normal white noises of new classes of tests

n 64 128

5% 10% %(pn = pnmin) 5% 10% %(pn = pnmin)

- DAN 04.66 06.22 98.62 04.56 06.34 99.00

- PAR 05.34 06.90 98.26 05.34 07.30 98.76

M1n - QS 04.60 06.12 97.52 04.70 06.52 98.08

- BAR 04.48 05.96 98.36 04.48 06.24 98.76

- TRON 07.08 09.40 96.46 07.28 09.54 97.00

- DAN 04.78 06.66 99.30 04.98 06.80 99.56

- PAR 05.18 06.88 98.86 05.12 07.12 99.12

M2n - QS 04.54 06.46 98.50 04.88 06.54 99.06

- BAR 04.08 06.04 98.94 04.56 06.28 99.32

- TRON 18.22 21.00 02.48 19.32 21.70 12.52

- DAN 05.36 07.88 99.18 05.28 09.00 99.48

- PAR 05.78 07.66 98.12 05.30 07.44 98.68

M3n - QS 05.16 06.90 97.70 05.14 07.06 98.76

- BAR 04.26 06.08 98.30 05.14 06.78 99.08

- TRON 23.36 25.56 89.42 20.34 22.24 85.74
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Table 7: Rejection rates in percentage under nonnormal (uniform) white noises of new classes

of tests

n 64 128

5% 10% 5% 10%

- DAN 05.86 07.72 05.10 07.20

- PAR 06.68 08.44 05.94 07.86

M1n - QS 05.58 07.74 05.20 07.12

- BAR 05.58 07.48 04.78 06.70

- TRON 08.88 11.44 08.12 10.58

- DAN 06.06 07.84 05.48 07.66

- PAR 06.20 07.98 05.52 07.78

M2n - QS 05.44 07.56 05.06 07.42

- BAR 05.02 07.14 04.88 06.94

- TRON 19.44 22.48 18.70 21.08

- DAN 06.56 08.90 06.44 09.78

- PAR 06.98 08.86 05.82 08.16

M3n - QS 05.62 08.36 05.56 07.80

- BAR 05.08 07.16 04.98 07.02

- TRON 24.28 26.26 23.45 25.15
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Table 8: Rejection rates in percentage under AR(1) alternative of new classes of tests

n 64 128

5% 10% 5% 10%

- DAN 37.50 43.90 71.30 76.50

- PAR 37.50 44.00 71.90 76.70

M1n - QS 37.10 43.50 71.70 76.70

- BAR 36.80 43.20 71.60 76.70

- TRON 31.90 36.80 62.00 67.50

- DAN 39.60 46.00 76.40 80.70

- PAR 39.50 45.60 75.20 80.50

M3n - QS 39.30 45.60 75.70 80.50

- BAR 38.90 44.70 75.40 80.30

- TRON 33.20 35.60 57.20 60.70

- DAN 40.60 46.50 76.00 80.40

- PAR 40.20 46.10 74.70 80.30

M2n - QS 39.90 45.90 75.10 80.00

- BAR 39.10 45.10 74.40 80.00

- TRON 46.50 51.50 76.40 80.30
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