Valuation of Credit Derivatives, and Credit Value-at-Risk, for the Energy Industry

Ehud I. Ronn
Professor of Finance
University of Texas at Austin

Montréal, April 13, 2007
OVERVIEW

• Objective of Credit Value-at-Risk (CVAR): Quantifying and Optimizing Counterparty Credit Exposure, Accounting for both Market and Credit Risks

• CVAR I: Credit Exposure at Risk — Calculating the Magnitude of Counterparty Exposure

• CVAR II:
 1. Evaluating and Optimizing Counterparties Credit Line
 2. Quantifying Credit Risk Insurance
 3. Using CVAR to Evaluate a Differentially-Priced Trade with Two Counterparties of Different Credit Rating

• CVAR III: Credit Value-at-Risk

• CVAR IV: Combining Market and Credit Risks

• Summary
CVAR I: “Credit Exposure at Risk” — Evaluating Current and Prospective Counterparty Exposure

1. Model all relevant forward prices for given portfolio:

\[
\Delta F_i = F_i \sigma_i \epsilon_{it} \\
\text{Var}(\Delta F_i) = F_i^2 \sigma_i^2 t \\
\text{Cov}(\Delta F_i, \Delta F_j) = F_i F_j \rho_{ij} \sigma_i \sigma_j t
\]

where

\(F_i = \) price of \(i \)th futures contract \\
\(\sigma_{it} = \) volatility of \(i \)th futures contract for maturity \(t \) \\
\(\epsilon_{it} = \) is a Normally distributed random variable with zero mean and standard deviation equal to \(\sqrt{t} \) \\
\(\rho_{ij} = \text{Corr}(\ln F_i, \ln F_j) \)

2. Incorporate option contracts on forward/futures contract \(i \)

3. Compute portfolio \(\textit{basis} \) for the given counterparty:

\(n_i = \) number of futures contracts held long (and the counterparty is consequently short) \\
\(F_{i0} = \textit{basis} \) for \(i \)-th futures contract

\[
\text{Basis} = K = \sum_i n_i F_{i0} \\
\text{Current Portfolio Value} = P_0 = \sum_i n_i F_i
\]
Under full netting procedures, the current exposure Π_0 to the counterparty is

$$\Pi_0 = \sum_i n_i (F_i - F_{i0}) \equiv P_0 - K,$$ \hspace{1cm} (2)

of which the current credit risk exposure is given by

$$\text{max} \{P_0 - K, 0\}.$$

4. Model Forward Volatility and compute Portfolio Volatility to date t:

$$d\Pi = \sum_i N_i dF_i$$

$$\implies \text{Var} (\Delta \Pi) = \sum_i \sum_j N_i N_j F_i F_j \rho_{ij} \sigma_{it} \sigma_{jt} t \equiv \sigma_{Pt}^2 t$$

5. Compute Month t Credit Exposure at Risk: Define for each counterparty the date t Credit Exposure at Risk, CER$_t$:

$$\text{CER}_t = \begin{cases}
\Pi_0 + \alpha \sigma_{Pt} \sqrt{t} & \text{if } \Pi_0 \geq 0 \\
\max \{\Pi_0 + \alpha \sigma_{Pt} \sqrt{t}, 0\} & \text{if } \Pi_0 < 0
\end{cases}$$ \hspace{1cm} (3)

6. Finally, define the counterparty’s exposure at risk, CER, as

$$\text{CER} \equiv \max_t \text{CER}_t,$$ \hspace{1cm} (4)

meaning that we would seek, for each counterparty, that date at which maximal 95th-percentile (α) exposure currently occurs.

2When $\Pi_0 < 0$ — because the current counterparty exposure is in the counterpart's favor, i.e., $\Pi_0 \equiv \sum_i n_i (F_i - F_{i0}) < 0$ — then $\text{CER}_t = \max \{\Pi_0 + \alpha \sigma_{Pt} \sqrt{t}, 0\}$.
CVAR I: Numerical Example

• Continuing with the previous numerical example, set
 \(N_1 = N_2 = 1; \sigma_1 = 30\%; \sigma_2 = 25\%; P_1 = $26; P_2 = $27 \)

• The dollar variance is
 \[
 \text{Var} (P_1 + P_2) = P_1^2 \sigma_1^2 + P_2^2 \sigma_2^2 + 2 \rho_{12} \sigma_1 \sigma_2 P_1 P_2 \\
 = 26^2 \times 0.3^2 + 27^2 \times 0.25^2 \\
 + 2 \times 0.6 \times 0.3 \times 0.25 \times 26 \times 27 = ($13.02)^2,
 \]
 with the dollar variance for the first month given by 13.02^2/12

• Consequently, at the 95-th percentile,
 \[
 \text{CER}_{1/12} = 1.645 \times 13.02 \times \sqrt{1/12} = $6.183
 \]

• Suppose now the term vols for the second month are
 \(\sigma_1 = 35\%; \sigma_2 = 30\% \),
respectively. Then the dollar variance for the first two-months is
 \[
 \text{Var} (P_1 + P_2) \Delta t = (P_1^2 \sigma_1^2 + P_2^2 \sigma_2^2 + 2 \rho_{12} \sigma_1 \sigma_2 P_1 P_2) \Delta t \\
 = (26^2 \times 0.35^2 + 27^2 \times 0.3^2 \\
 + 2 \times 0.6 \times 0.35 \times 0.3 \times 26 \times 27) (1/6) \\
 = ($15.39)^2 (1/6)
 \]
which in turns renders \(\text{CER}_{1/6} \) at the 95-th percentile equal to
 \[
 \text{CER}_{1/6} = 1.645 \times 15.39 \times \sqrt{1/6} = $10.34
 \]

• If, however, Contract 1 matures at month 1, then
 \[
 \text{Var} (P_2) \Delta t = (P_2^2 \sigma_2^2) \Delta t = (27^2 \times 0.3^2) (1/6) = ($8.16)^2 (1/6),
 \]
which in turn would render \(\text{CER}_{1/6} \) at the 95-th percentile equal to
 \[
 \text{CER}_{1/6} = 1.645 \times 8.16 \times \sqrt{1/6} = $5.48
 \]
CVAR I
Credit Exposure @ Risk – CP 1

Credit Exposure at Risk

Credit Value At Risk Calculations

Counterparty	Credit Rating	Expose Period	Recovery Rate	CE @ Risk
CP 1 | BBB | 10 | .5 | $459.09
CP 2 | BBB | 10 | .5 | $702.56

Commodity

Term Volatility

Credit Exposure

Process Date: 15-JAN-2001

Nucleus Software: A product of Caminus Corporation
CVAR I
CER Profile Graph – CP 1

Credit Exposure At Risk (CER)

Exposure Month

CER

$340.00

$360.00

$380.00

$400.00

$420.00

$440.00

$460.00

$480.00

2001 2

2001 3

2001 4

2001 5

2001 6

2001 7

2001 8

2001 9

2001 10

2001 11
Credit Value At Risk Calculations

<table>
<thead>
<tr>
<th>Counterparty</th>
<th>Credit Rating</th>
<th>Expose Period</th>
<th>Recovery Rate</th>
<th>CE @ Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-P 3</td>
<td>A</td>
<td>11</td>
<td>.5</td>
<td>$2,124.58</td>
</tr>
<tr>
<td>C-P 1</td>
<td>BBB</td>
<td>10</td>
<td>.5</td>
<td>$459.09</td>
</tr>
<tr>
<td>C-P 2</td>
<td>BBB</td>
<td>10</td>
<td>.5</td>
<td>$702.56</td>
</tr>
</tbody>
</table>

Probability

- Default Probability: .18
- Probability Volatility: .3

Commodity

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Month</th>
<th>Pos</th>
<th>Price</th>
<th>Basis</th>
<th>Vol</th>
<th>Corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>200106</td>
<td>40</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>POWER</td>
<td>200111</td>
<td>40</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Term Volatility

<table>
<thead>
<tr>
<th>Month</th>
<th>Term Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>200102</td>
<td>.587</td>
</tr>
<tr>
<td>200103</td>
<td>.629</td>
</tr>
<tr>
<td>200104</td>
<td>.683</td>
</tr>
<tr>
<td>200105</td>
<td>.741</td>
</tr>
<tr>
<td>200106</td>
<td>.8</td>
</tr>
</tbody>
</table>

Credit Exposure

- 200102: $321.94
- 200103: $337.93
- 200104: $558.53
- 200105: $300.22
- 200106: $702.56
- 200107: $296.93
- 200108: $306.57
- 200109: $315.99

Process Date: 15-JAN-2001

Nucleus Software: A product of Caminus Corporation
Credit Exposure At Risk (CER)
CVAR I
Credit Exposure @ Risk – CP 3

Credit Value At Risk Calculations

<table>
<thead>
<tr>
<th>Counterparty</th>
<th>Credit Rating</th>
<th>Exposure Period</th>
<th>Recovery Rate</th>
<th>CE @ Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-P 3</td>
<td>A</td>
<td>11</td>
<td>.5</td>
<td>$2,124.68</td>
</tr>
<tr>
<td>C-P 1</td>
<td>BBB</td>
<td>10</td>
<td>.5</td>
<td>$459.09</td>
</tr>
<tr>
<td>C-P 2</td>
<td>BBB</td>
<td>10</td>
<td>.5</td>
<td>$702.56</td>
</tr>
</tbody>
</table>

Probability
- Default Probability: 0.05
- Probability Volatility: 2

Commodity

<table>
<thead>
<tr>
<th>Com</th>
<th>Month</th>
<th>Pos</th>
<th>Price</th>
<th>Basis</th>
<th>Vol</th>
<th>Corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS</td>
<td>200102</td>
<td>10</td>
<td>4.5</td>
<td>1</td>
<td>6</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200103</td>
<td>20</td>
<td>4.5</td>
<td>1</td>
<td>6</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200104</td>
<td>25</td>
<td>5.5</td>
<td>1</td>
<td>6</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200105</td>
<td>25</td>
<td>6.5</td>
<td>1</td>
<td>6</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200106</td>
<td>30</td>
<td>7.5</td>
<td>1</td>
<td>6</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200107</td>
<td>40</td>
<td>8.5</td>
<td>1</td>
<td>8</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200108</td>
<td>40</td>
<td>8.5</td>
<td>1</td>
<td>8</td>
<td>.5</td>
</tr>
<tr>
<td>GAS</td>
<td>200109</td>
<td>30</td>
<td>8.5</td>
<td>1</td>
<td>6</td>
<td>.5</td>
</tr>
</tbody>
</table>

Term Volatility

<table>
<thead>
<tr>
<th>Month</th>
<th>Term Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>200102</td>
<td>.545</td>
</tr>
<tr>
<td>200103</td>
<td>.686</td>
</tr>
<tr>
<td>200104</td>
<td>.836</td>
</tr>
<tr>
<td>200105</td>
<td>.689</td>
</tr>
<tr>
<td>200106</td>
<td>.744</td>
</tr>
<tr>
<td>200107</td>
<td>.8</td>
</tr>
<tr>
<td>200108</td>
<td>.8</td>
</tr>
<tr>
<td>200109</td>
<td>.8</td>
</tr>
</tbody>
</table>

Credit Exposure

<table>
<thead>
<tr>
<th>Month</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>200102</td>
<td>$2,124.68</td>
</tr>
<tr>
<td>200103</td>
<td>$2,102.42</td>
</tr>
<tr>
<td>200104</td>
<td>$2,025.84</td>
</tr>
<tr>
<td>200105</td>
<td>$1,880.88</td>
</tr>
<tr>
<td>200106</td>
<td>$1,697.04</td>
</tr>
<tr>
<td>200107</td>
<td>$1,413.60</td>
</tr>
<tr>
<td>200108</td>
<td>$897.13</td>
</tr>
<tr>
<td>200109</td>
<td>$475.76</td>
</tr>
</tbody>
</table>

Process Date: 15-JAN-2001
Compute
Display Chart

Nucleus Software: A product of Caminus Corporation
Intuitive Appeal of “Credit Exposure at Risk”

- The advantages of CER thus defined is that it captures three important features:
 1. The current “moneyness” of the exposure, Π
 2. The riskiness of that exposure, σ_{Pt}
 3. The effect of time t

thus justifying the definition of the term as “Credit Exposure at Risk.”

- For counterparties with identical credit risk, eq. (4)’s CER constitutes the mechanism for credit allocation across counterparties: Specifically, for counterparties assessed to have the same level of credit quality, the CER should be equalized across these clients.

- In sum, the inputs required for the Credit Exposure at Risk model include:
 1. **Financial Environment:** Prices of futures contracts; prices of option contracts; times to maturity of futures and options; volatilities of futures contracts; correlations across futures contracts
 2. **Counterparty Data:** Number of futures contracts; number and exercise prices of option contracts; initial values of futures and option contracts
An (Important and Relevant) Interpretation of the Black-Scholes Formula

• As is well-known, the payoff on a call option is
 \[\max\{S - K, 0\} . \]

• The value of an option today, \(T \) years prior to expiration, is given by the discounted present value of the expectation \(E(\cdot) \):

\[
e^{-rT} E(\max\{S - K, 0\}) ,
\]

where the result of that expectation is the Black-Scholes formula:

\[
e^{-rT} E(\max\{S - K, 0\}) = SN(d) - Ke^{-rT} N(d - \sigma \sqrt{T})
= \text{Black-Scholes Formula}
\]

This result is valuable, in that it permits an evaluation of the value of credit insurance, and its dependence on the

• Moneyness,
• Volatility, and
• Default sensitivity

of the counterparty portfolio

\[^{3}\text{Technically, this expectation obtains under the so-called “risk-neutral” distribution.} \]
CVAR II: 1. Evaluating and Optimizing Counterparties Credit Line
2. Quantifying Credit Risk Insurance

1. As before, assume we have calculated

\[
\text{Var} (\Delta P) = \sum_i \sum_j N_i N_j F_i F_j \rho_{ij} \sigma_{it} \sigma_{jt} t.
\]

Make the transition to a LogNormal distribution solving for \(\sigma_{Pt} \) from

\[
\text{Var} (\Delta P) = \sigma_{Pt}^2 P^2 t
\]

2. Let \(p \) be defined as the marginal probability to default at a given point in time in the future, conditional on not having previously defaulted. Suppose that probability to default follows its own diffusion process,

\[
\frac{dp}{p} = \sigma_p dz_p,
\]

that is, \(p \) is Log Normally distributed \((5) \)

where we allow for a correlation between \(\Pi_0 \) and \(p \):

\[
\rho \equiv \text{Corr} (dz_p, dz_P)
\]

3. Conditional on the event of default at date \(t \), let the recovery rate per promised date \(t \) dollar be given by the known parameter value of \(\alpha \) (which parameter can be made random, or dependent on the ratings category, as in \(\alpha_{\text{ratings category}} \))
The Normal and LogNormal Distributions: An Interpretation using the Numerical Example (Cont’d)

- Consider the previous analysis that pertained to a portfolio composed of Contract 1 and Contract 2
- Although the sum (a portfolio) of LogNormal random variables is not LogNormal, we approximate that portfolio as LogNormal
 - What is the dollar variance of a portfolio of P_1 and P_2?

$$\text{Var}(P_1 + P_2) = P_1^2 \sigma_1^2 + P_2^2 \sigma_2^2 + 2 \rho_{12} \sigma_1 \sigma_2 P_1 P_2$$

$$= 26^2 \times 0.3^2 + 27^2 \times 0.25^2$$

$$+ 2 \times 0.6 \times 0.3 \times 0.25 \times 26 \times 27 = (\$13.02)^2$$

- What is the value of the portfolio?

$$\Pi = P_1 + P_2 = 26 + 27 = \$53$$

- Consequently, what LogNormal variance is implied?

$$(P_1 + P_2)^2 \sigma^2_{\Pi} = P_1^2 \sigma_1^2 + P_2^2 \sigma_2^2 + 2 \rho_{12} \sigma_1 \sigma_2 P_1 P_2$$

$$\implies \sigma_{\Pi} = \sqrt{\frac{P_1^2 \sigma_1^2 + P_2^2 \sigma_2^2 + 2 \rho_{12} \sigma_1 \sigma_2 P_1 P_2}{(P_1 + P_2)^2}}$$

$$= 24.57\%$$
CVAR II: Counterparty Credit Line and Credit Risk Insurance (Cont’d)

4. In CVAR II, we extend the analysis of CVAR I by considering, for each of the firm’s counterparties, the (random) exposure given by

\[
\begin{cases}
\text{Default, Partial Recovery at rate } \alpha & \text{with probability } \tilde{p}_t \\
0 & \text{with probability } 1 - \tilde{p}_t
\end{cases}
\]

5. Let \(V_t \) be the current value of that risk exposure. Then,

\[
V_t = (1 - \alpha) e^{-rt} E \left[\max \{ p_t (P_t - K), 0 \} \right] \\
= (1 - \alpha) e^{-rt} p_t \left[P_0 e^{\rho \sigma_p t} \sigma_{P_t} N(d) - K N \left(d - \sigma_{P_t} \sqrt{t} \right) \right] \\
\]

where

\[
E(pP) = E(p) E(P) + \text{Cov}(p, P) = p_t P_0 e^{\rho \sigma_p t} \sigma_{P_t} \\
\]

\[
d \equiv \frac{\log(P_0/K) + \rho \sigma_p t \sigma_{P_t}}{\sigma_{P_t} \sqrt{t}} + \frac{1}{2} \sigma_{P_t} \sqrt{t}
\]

Scaled up by \(1 - \alpha \), \(V_t \) is simply the current value of an option with a future random payoff \(\tilde{p}_t \tilde{P}_t \) and a random exercise price \(\tilde{p}_t K \).

6. With the above, we compute

\[
\sum_t V_t, \\
\]

where the \(\sum_t \) operator captures the probability and cost of default across all maturities.

This has the dual interpretation of:

(a) The number, across all ratings category, to be set as the appropriate credit line for the firm’s counterparties

(b) The no-arbitrage value of default-risk insurance for the specific counterparty

\[\text{With no default, the cost of the exposure is zero.}\]
Numerical Example of CVAR II

Assume the data of the previous numerical example. In addition, assume:

\[T = 1 \]: Maturity of futures contract with Counterparty 1
\[r = 5\% \]: One-year riskfree rate of interest

Now consider the following four possible states of nature at the end of the year:

<table>
<thead>
<tr>
<th>Case</th>
<th>Futures Contract Value</th>
<th>Default</th>
<th>Recovery Rate</th>
<th>Probability</th>
<th>Payoff on Default Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$33</td>
<td>No</td>
<td>NA</td>
<td>45%</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$33</td>
<td>Yes</td>
<td>45%</td>
<td>5%</td>
<td>0.55 \cdot (33 - 26)</td>
</tr>
<tr>
<td>3</td>
<td>$20</td>
<td>No</td>
<td>NA</td>
<td>47%</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$20</td>
<td>Yes</td>
<td>NA</td>
<td>3%</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. This is the futures contract value at its maturity date.
2. NA – Not Applicable, either because of No Default, or because Default occurred when Counterparty 1 had a positive, rather than negative, mark-to-market on the contract.
3. Note that default probability is positively correlated with Price: Default is more likely to occur when the Counterparty’s mark-to-market is negative (5\%), than when it is positive (3\%).
4. Payoff is positive only if default occurs when Counterparty 1 has a negative MTM on the contract.

Based on Table 1 and the one-year 5\% rate of interest, the value of CVAR II is:

\[
\text{CVAR II} = \text{Prob. of Default} \times \left(\frac{\text{Payoff in the Event of Default}}{1 + \text{Discount Rate}} \right)
\]

\[
= 0.05 \times \frac{0.55 \cdot (33 - 26)}{1.05} = \$0.1833. \tag{8}
\]
CVAR II: Estimating the Default Probablility Process
Direct Estimates of Default-Rate Volatilities

• Recall that the fundamental Default Prob. Equation is:

\[\ln p_t \sim N (\ln \bar{p}_t, \sigma_{pt}), \]

(9)

where the potential time-dependence enters through \(\ln \bar{p}_t \) and \(\sigma_{pt} \), and

where the volatility \(\sigma_{pt} \) should be evaluated as of time 0.

• In CreditRisk+, Credit Suisse First Boston provides a table reporting one-

year default rate and volatilities (Section 2.6.4):

<table>
<thead>
<tr>
<th>Credit Rating</th>
<th>One-Year Default Rate (%)</th>
<th>Average ((\mu))</th>
<th>Standard Deviation ((\sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>0.00</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Aa</td>
<td>0.03</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>A</td>
<td>0.01</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Baa</td>
<td>0.12</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Ba</td>
<td>1.36</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>B</td>
<td>7.27</td>
<td></td>
<td>5.1</td>
</tr>
</tbody>
</table>

1. Interpret the above statistics as evolving from a Normal, rather than LogNormal, distribution: \(p \sim N (\mu, \sigma) \)

2. To convert these to the LogNormal (9) distribution we are using, note that the Normal distribution is equivalent to \(\text{Var}(dp) = \sigma^2 \), and the LogNormal to \(\text{Var}(dp/p) = \sigma^2_{pt} \). Thus, the approximation we can use is:

\[\sigma^2_{pt} \equiv \text{Var} \left(\frac{dp}{p} \right) = \left(\frac{\sigma}{p} \right)^2 \cong \left(\frac{\sigma}{\mu} \right)^2. \]

3. Thus, the \(\sigma_{pt} \) is given by the ratio of the third column in the table above divided by the second column.
CreditRisk$^+$ provides a table reporting recovery rates by seniority and security (Section 2.6.5):

<table>
<thead>
<tr>
<th>Seniority and Security</th>
<th>Average (%)</th>
<th>Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Secured Bank Loan</td>
<td>71.18</td>
<td>21.09</td>
</tr>
<tr>
<td>Senior Secured Public</td>
<td>63.45</td>
<td>26.21</td>
</tr>
<tr>
<td>Senior Unsecured Public</td>
<td>47.54</td>
<td>26.29</td>
</tr>
<tr>
<td>Senior Subordinated Public Debt</td>
<td>38.28</td>
<td>24.74</td>
</tr>
<tr>
<td>Subordinated Public Debt</td>
<td>28.29</td>
<td>20.09</td>
</tr>
<tr>
<td>Junior Subordinated Public Debt</td>
<td>14.66</td>
<td>8.67</td>
</tr>
</tbody>
</table>

Source: Historical Default Rates of Corporate Bond Issuers, 1920 - 1996 (January 1997), Moody’s Investors Service Global Credit Risk
Computing CVAR II: Continuing Numerical Example

- **Input Data:**

<table>
<thead>
<tr>
<th>Definition</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Expiration</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>Exercise Price</td>
<td>K</td>
<td>53</td>
</tr>
<tr>
<td>Adjusted Forward Price</td>
<td>$F e^{\rho \sigma_p \sigma P t}$</td>
<td>55.40</td>
</tr>
<tr>
<td>Forward Volatility</td>
<td>σ_P</td>
<td>24.57%</td>
</tr>
<tr>
<td>Expected Default Rate</td>
<td>p</td>
<td>7.5%</td>
</tr>
<tr>
<td>Default Volatility Rate</td>
<td>σ_p</td>
<td>30%</td>
</tr>
<tr>
<td>Corr(Default, Prices)</td>
<td>ρ</td>
<td>0.6</td>
</tr>
<tr>
<td>Recovery Rate</td>
<td>α</td>
<td>0.45</td>
</tr>
<tr>
<td>Riskfree Rate</td>
<td>r</td>
<td>5%</td>
</tr>
</tbody>
</table>

- **Option Value:**

$$C \left(F = 55.40, \ K = 53, \ \sigma = 24.57\%, \ r = 5\%, \ T = 1 \right) = 6.26$$

- **CVAR II Value is**

$$\left(1 - \alpha \right) pC = 0.55 \times 0.075 \times 6.26 = 0.2584$$
Additional Application of CVAR II

Using CVAR II to Evaluate a Differentially-Priced Trade with Two Counterparties

<table>
<thead>
<tr>
<th>Variable</th>
<th>Counterparty A</th>
<th>Counterparty B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to maturity</td>
<td>$t = 1$</td>
<td></td>
</tr>
<tr>
<td>Counterparty offer price</td>
<td>$F_{A0} = 95$</td>
<td>$F_{B0} = 96$</td>
</tr>
<tr>
<td>Adjusted futures price $P_0 e^{\rho \sigma Pt}$</td>
<td>98.19</td>
<td>96.11</td>
</tr>
<tr>
<td>Riskfree rate</td>
<td>$r = 5%$</td>
<td></td>
</tr>
<tr>
<td>Mid-point bid/ask</td>
<td>$F = 90$</td>
<td></td>
</tr>
<tr>
<td>Futures vol</td>
<td>$\sigma_F = 55%$</td>
<td></td>
</tr>
<tr>
<td>$1 - $ Recovery rate</td>
<td>$\alpha = 0.45$</td>
<td></td>
</tr>
<tr>
<td>Default prob</td>
<td>$p_A = 10%$</td>
<td>$p_B = 1%$</td>
</tr>
<tr>
<td>Default vol</td>
<td>$\sigma_{pA} = 20%$</td>
<td>$\sigma_{pB} = 2%$</td>
</tr>
<tr>
<td>Default corr</td>
<td>$\rho_A = 0.3$</td>
<td>$\rho_A = 0.1$</td>
</tr>
<tr>
<td>Total vol</td>
<td>$\sigma_{tA} = 63.91%$</td>
<td>$\sigma_{tB} = 57.0%$</td>
</tr>
<tr>
<td>Insurance cost, V_t</td>
<td>1.459</td>
<td>0.126</td>
</tr>
<tr>
<td>Market + Insurance Costs</td>
<td>6.459</td>
<td>6.126</td>
</tr>
</tbody>
</table>
CVAR III: Credit Value-at-Risk

• With $\sum_t V_t$ from CVAR II, we have

$$
\sum_t dV_t = P_0 \left(\sum_t \frac{\partial V_t}{\partial P_0} \right) \frac{dP_0}{P_0} + \sum_t \frac{\partial V_t}{\partial p_t} p_t \frac{dp_t}{p_t}
$$

(10)

where

$$
\frac{\partial V_t}{\partial P_0} = (1 - \alpha) p_t e^{\rho_{Pp}\sigma_{pt}\sigma_{pt}} N(d)
$$

$$
\frac{\partial V_t}{\partial p_t} = \frac{V_t}{p_t}
$$

• For confidence level β (e.g., $\beta = 1.65$), the Value-at-Risk we seek will be given by $\beta \sqrt{\text{Var} (dC) \Delta t}$. In turn,

$$
\text{Var} \left(\sum_t dV_t \right) = P_0^2 \left(\sum_t \frac{\partial V_t}{\partial P_0} \right)^2 \sigma_{P0}^2 dt + \sum_t \left(\frac{\partial V_t}{\partial p_t} p_t \right)^2 \sigma_{pt}^2 dt
$$

$$
+ 2 \sum_t \sum_{\tau > t} \frac{\partial V_t}{\partial p_t} \frac{\partial V_{\tau}}{\partial p_{\tau}} p_{t} p_{\tau} \text{Cov} (\ln p_t, \ln p_{\tau}) dt
$$

$$
+ 2 \sum_t \sum_{\tau > t} \frac{\partial V_t}{\partial P_0} \frac{\partial V_{\tau}}{\partial p_{\tau}} P_0 p_{\tau} \text{Cov} (\ln P_0, \ln p_{\tau}) dt
$$

(11)

where

$$
\sigma_{P0} = \text{is the instantaneous, not term, vol of } P_0
$$

$$
\text{Cov} (\ln p_t, \ln p_{\tau}) = \rho_{pt, pt} \sigma_{pt} \sigma_{pt}
$$

$$
\text{Cov} (\ln P_0, \ln p_{\tau}) = \rho_{Pp} \sigma_{P0} \sigma_{pt}
$$

• Interpretation of CVAR III: CVAR III quantifies — at, say, the 95-th percentile — the potential deterioration of the value of CVAR II’s C over the (exogenously specified) holding-period Δt
CVAR III: Numerical Example

• Implementing the $\text{Var}(\Delta V_t)$ equation, we have:

\[
\frac{\partial V_t}{\partial P_0} = (1 - \alpha) \, p \, \Delta C = 0.55 \times 0.075 \times 0.5889 = 0.0243
\]

\[
\frac{\partial V_t}{\partial p_t} = (1 - \alpha) \, C = 0.55 \times 11.13 = 6.12
\]

\[
\text{Var} (\Delta V_t) = P_0^2 \left(\frac{\partial V_t}{\partial P_0} \right)^2 \sigma_{P_0}^2 + \left(\frac{\partial V_t}{\partial p_t} \, p_t \right)^2 \sigma_{p_t}^2
\]

\[
+ 2 \frac{\partial V_t}{\partial P_0} \frac{\partial V_t}{\partial p_t} \, P_0 p_t \, \text{Cov} (\ln P_0, \ln p_t)
\]

\[
= 53^2 \times 0.0243^2 \times 0.2457^2 + (3.445 \times .075)^2 \times 0.3^2
\]

\[
+ 2 \times 0.6 \times 53 \times 0.0243 \times 0.2457 \times 3.445 \times .075 \times 0.3
\]

\[
= (0.368)^2
\]

• For a one-week holding period $\Delta t = 1/52$, CVAR III Value is

\[
\beta \sqrt{\text{Var} (\Delta V_t)} \, \Delta t = 1.645 \times 0.368 / \sqrt{52} = $0.084
\]
CVAR IV: VAR Combining Market and Credit Risks

- Consider the case of a portfolio containing a single forward contract:

<table>
<thead>
<tr>
<th>Type of VAR</th>
<th>Analytical Expression</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market (Traditional VAR)</td>
<td>$1.645 \times \sqrt{\text{Var}(\Delta F_1)/52}$</td>
<td></td>
</tr>
<tr>
<td>Credit VAR (CVAR III)</td>
<td>$1.645 \times \sqrt{\text{Var}(\Delta V)/52}$ V is the value of CVAR II</td>
<td></td>
</tr>
<tr>
<td>CVAR IV</td>
<td>$1.645 \times \sqrt{\text{Var}(\Delta V - \Delta F_1)/52}$</td>
<td></td>
</tr>
</tbody>
</table>

- Why Var $(\Delta V - \Delta F_1)$?
 Consider a long position in a forward contract.
 - An increase in market price reduces losses due to market but increase potential losses due to credit
 - A decrease in market price produces market losses but reduces credit exposure

The converse applies for a short forward position.

Conclusion: Market and Credit VARs offset
CVAR IV: Numerical Example

1. Per the numerical example, we seek

\[\text{Var} (\Delta V - \Delta P_0) = \text{Var} (\Delta V) + \text{Var} (\Delta P_0) - 2 \text{Cov} (\Delta V, \Delta P_0) \]

2. From CVAR III,

\[\text{Var} (\Delta V_t) = (0.368)^2 \]

3. Further

\[\text{Var} (\Delta P_0) = (53 \times 0.2457)^2 \]

4. We now require

\[
\text{Cov} (\Delta V, \Delta P_0) = \text{Cov} \left(P_0 \frac{\partial V_t}{\partial P_0} \frac{dP_0}{P_0} + \frac{\partial V_t}{\partial p_t} p_t \frac{dp_t}{p_t}, P_0 \frac{dP_0}{P_0} \right)
\]
\[= P_0^2 \frac{\partial V_t}{\partial P_0} \sigma_{P_0}^2 + \frac{\partial V_t}{\partial p_t} p_t P_0 \rho \sigma_p \sigma_{P_0} \]
\[= 53^2 \times 0.2457^2 \times 0.0243 + 3.445 \times 0.075 \times 53 \times 0.6 \times 0.3 \times 0.2457 = 4.726 \]

5. Finally,

\[\text{Var} (\Delta V - \Delta P_0) = (0.368)^2 + (53 \times 0.2457)^2 - 2 \times 4.726 = (12.66)^2 \]

\[\implies \text{CVAR IV} = \frac{1.645 \sqrt{\text{Var} (\Delta V - \Delta P_0)} \Delta t}{\sqrt{52}} = 2.888 \]
SUMMARY

• CVAR implementation can be done analytically

• CVARs can be computed for
 – Credit Exposure at Risk (CVAR I)
 – Credit Risk Insurance (CVAR II)
 – Value-at-Risk computation (CVAR III) as well as VAR incorporating both market and credit risks (CVAR IV)
Appendix —

CVAR II: Estimating the Default Probability Process

Indirect Estimates of Default-Rate Volatilities

This approach combines the use of year-by-year marginal default probabilities p_t together with transition-matrix values to determine the default volatilities σ_{pt}.

<table>
<thead>
<tr>
<th>Average Cumulative Default Rates, Year 1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

One-Year Transition Probabilities for a BBB-Rated Borrower

<table>
<thead>
<tr>
<th>Rating</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>0.02%</td>
</tr>
<tr>
<td>AA</td>
<td>0.33%</td>
</tr>
<tr>
<td>A</td>
<td>5.95%</td>
</tr>
<tr>
<td>BBB</td>
<td>86.93%</td>
</tr>
<tr>
<td>BB</td>
<td>5.3%</td>
</tr>
<tr>
<td>B</td>
<td>1.17%</td>
</tr>
<tr>
<td>CCC / Default</td>
<td>0.12% + 0.18% = 0.3%</td>
</tr>
</tbody>
</table>

Notationally, let each probability in the above table be denoted q_i, $i = 1, \ldots, 7$, and let each entry in the previous table be denoted p_{1i}. That is,

$$[p_{11}, p_{12}, p_{13}, p_{14}, p_{15}, p_{16}, p_{17}] = [0.00, 0.00, 0.06, 0.18, 1.06, 5.2, 19.79]$$

Then the calculation of $\bar{p}_1 \equiv \mathbb{E}(p_1)$, $\text{Var}(p_1)$ and $\text{Var}(\ln p_1)$ for each month in year 1 is given by:

$$\bar{p}_1 \equiv \mathbb{E}(p_1) = \sum_{i=1}^{7} q_i \frac{p_{1i}}{12}$$

$$\text{Var}(p_1) = \sum_{i=1}^{7} q_i \left(\frac{p_{1i}}{12} - \bar{p}_1 \right)^2 / 144$$

$$\text{Var}(\ln p_1) \approx \frac{\text{Var}(p_1)}{\bar{p}_1} \equiv \sigma_{p_1}^2$$