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Motivation & Background Material

Motivation

I Curse of dimensionality makes exact solution of large MDPs
intractable

I Interest in approximate DP has grown lately due to some success
stories...

I but with significant trial and error and poor generalization
I An LP formulation may hopefully yield theoretical results
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Motivation & Background Material

Problem formulation

I Finite state space: S, |S| = N

I ∀x ∈ S there exists a finite set of actions Ax

I Taking action a ∈ Ax yields cost ga(x)
I State transition probabilities: pa(x, y).∀x ∈ S.y ∈ S
I With policy u we have: pu(x)(x, y). Consider transition matrix Pu

whose (x, y)th entry is pu(x)(x, y)

D.P. de Farias and B. van Roy () The LP approach to ADP March 28, 2006 4 / 29



Motivation & Background Material

Optimality criterion

I Optimize infinite-horizon discounted cost:

Ju(x) = E

[ ∞∑

t=0

αtgu(xt)|x0 = x

]

I Well known there exists a single policy u that minimizes Ju(x)
simultaneously for all x

I The goal is to find that single policy
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Motivation & Background Material

DP Operator T

I Define the DP operators Tu and T as:

TuJ = gu + αPuJ

TJ = min
u

(gu + αPuJ) (1)

I The solution of Bellman’s equation is J = TJ

I The unique solution J∗ of (1) is the optimal cost-to-go function:
J∗ = minu Ju

I Optimal actions generated by:

u(x) = argmin
a∈Ax


ga(x) + α

∑

y∈S
pa(x, y)J∗(y)



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LP approach to ADP LP formulation of the MDP problem

Linear Programming Approach (1/2)

I One approach to solve Bellman’s equation:

max cT J,

s.t. TJ ≥ J

c is a vector with positive state-relevance weights
I Can be shown that any feasible J satisfies J ≤ J∗

I It follows that for any c, J∗ is the unique solution to the above
equation
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LP approach to ADP LP formulation of the MDP problem

Linear Programming Approach (2/2)

I T is a nonlinear operator
I We can rewrite problem as:

max cT J

s.t. ga(x) + α
∑

y∈S pa(x, y)J(y) ≥ J(x)
∀x ∈ S.∀a ∈ Ax

I This problem will be referred to as the exact LP
I Any realistic problem will have a large number of variables and

constraints!
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LP approach to ADP LP approach to Approximate DP

LP Approach to approximate DP (1/2)

I Given pre-selected basis functions φ1, · · · , φK , define Φ as:

Φ =




| |
φ1

... φK

| |




I Want to compute a weight vector r̃ ∈ RK s.t. Φr̃ ≈ J∗

I Policy defined according to

u(x) = argmin
a∈Ax


ga(x) + α

∑

y∈S
pa(x, y)(Φr̃)(y)




would hopefully be near-optimal
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LP approach to ADP LP approach to Approximate DP

LP Approach to approximate DP (2/2)

I As before, can reformulate LP as:

max cT Φr

s.t. ga(x) + α
∑

y∈S
pa(x, y)(Φr)(y) ≥ (Φr)(x) (2)

∀x ∈ S.∀a ∈ Ax

I This problem will be referred to as the approximate LP
I Number of variables reduced to K, but number of constraints

remains as large as before
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LP approach to ADP LP approach to Approximate DP

Importance of state-relevance weights

I In the exact LP, maximizing cT J yields J∗ for any choice of c

I The same is not true for the approximate LP

Lemma

A vector r̃ solves

max cT Φr

s.t. TΦr ≥ Φr

if and only if it solves

min ‖J∗ − Φr‖1,c

s.t. TΦr ≥ Φr

I The algorithm can be lead to generate better approximations in a certain
region of the state space by assigning a larger weight to that region!
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LP approach to ADP Quality of optimal policy

Measuring quality of policies (1/2)

I If ν is the initial state distribution, a measure of the quality of policy u is:
EX∼ν [Ju(X)− J∗(X)] = ‖Ju − J∗‖1,ν

I Define a measure µu,ν over state space associated with policy u and
distribution ν given by

µT
u,ν = (1− α)νT

∞∑
t=0

αtP t
u

= (1− α)νT (I − αPu)−1

I µu,ν captures expected frequency of visits to each state when system
runs under policy u, conditioned on initial state distributed according to ν

I It turns out that µu,ν is a probability distribution
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LP approach to ADP Quality of optimal policy

Measuring quality of policies (2/2)

Theorem
Let J : S 7→ R be such that TJ ≥ J . Then

‖JuJ − J∗‖1,ν ≤ 1
1− α

‖J − J∗‖1,µuJ ,ν

I The above theorem says that if the approximate cost-to-go
function J is close to J∗, the performance of the policy generated
by J should also be close to the performance of the optimal policy

I We may want to choose c so that it captures frequency with which
different states are visited (which in general depends on policy
being used)
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LP approach to ADP Bounds on Approximation

Error bounds for the approximate LP

I Would like to guarantee that Φr̃ is not too much farther from J∗

than Φr∗ is
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LP approach to ADP Bounds on Approximation

A Simple Bound

Theorem
Let e be in the span of the columns of Φ and c be a probability distribution.
Then, if r̃ is an optimal solution to the approximate LP,

‖J∗ − Φr̃‖1,c ≤ 2
1− α

min
r
‖J∗ − Φr‖∞

I Establishes that when the optimal cost-to-go function lies close to the
span of the basis functions, the approximate LP generates a good
approximation.

I However, minr ‖J∗ − Φr‖∞ is typically huge in practice

I Also, the above bound doesn’t take the choice of c into account
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LP approach to ADP Bounds on Approximation

Lyapunov Functions

I Introduce operator H for all V : S 7→ R as:

(HV )(x) = max
a∈Ax

∑
y

Pa(x, y)V (y)

I For each V : S 7→ R, define a scalar βV by

βV = max
x

α(HV )(x)
V (x)

I Denote V : S 7→ R+ a Lyapunov function if βV < 1

I Equivalent to condition that there exist V > 0 and β < 1 s.t.
α(HV )(x) ≤ βV (x), ∀x ∈ S

I βV conveys a degree of ”stability”, with stronger values representing
stronger stability
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LP approach to ADP Bounds on Approximation

An Improved Bound

Theorem
Let r̃ be a solution of the approximate LP. Then, for any v ∈ RK such that
(Φv)(x) > 0 for all x ∈ S and αHΦv < Φv,

‖J∗ − Φr̃‖1,c ≤ 2cT Φv

1− βΦv
min

r
‖J∗ − Φr‖∞,1/Φv

I With introduction of ‖ · ‖∞,1/Φv, the error at each state is now weighted
by the reciprocal of the Lyapunov function value.

I The Lyapunov function should take on large values in undesirable
regions of state space (where J∗ is large

I State relevance weights are now factored into new bound
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Constraint Sampling Dimensionality Reduction Strategy

The Constraint Sampling Strategy - I

Consider the approximate LP:

maximize cT Φr,
subject to TΦr ≥ Φr.

(3)

Problems remaining:
I Objective cT Φr is hard to evaluate.
I Number of constraints is large.
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Constraint Sampling Dimensionality Reduction Strategy

The Constraint Sampling Strategy - II

Approximation:

maximize c̃T Φr̂
subject to (TΦr)(x) ≥ (Φr)(x) for all x ∈ {x1, . . . , xN}

r ∈ N
(4)

I c̃T Φr can be obtained by sampling according to the distribution c
(c is positive by definition and can be made to sum to 1 without
changing the problem).

I If we sample some reasonable number of constraints, then
“almost all” others will be satisfied.

I The constraints that are not satisfied don’t distort the
solution too much.
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Constraint Sampling In a general LP

Main Theorem - I

Given:

maximize cT x,
subject to Ax ≤ b,

(5)

and a probability distribution µ over the rows of A.

Define x̂N as the optimal solution of the following LP:

maximize cT x,
subject to Aijx ≤ bij , for j = 1, 2, . . . , N,

(6)

where Aij is the ij th row of the matrix A, ij are sampled IID according
to a distribution µ.
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Constraint Sampling In a general LP

Main Theorem - II

Theorem
For arbitrary ε, δ > 0, if N ≥ n/(εδ)− 1, then

P {µ({i|Aix̂N > bi}) ≤ ε} ≥ 1− δ, (7)

where the probability is taken over the random sampling of constraints.

I ε represents a tolerance or control on how many constraints are
allowed to be violated.

I 1− δ represents a confidence level.
I The theorem states that given an ε and δ, the number of

constraints we need for (7) to hold is linear in n, and does not
depend on m.
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Constraint Sampling In a general LP

Proof - I

Definition
Given an LP, a constraint is called a support constraint if the optimal
objective value is changed if the constraint is relaxed.

Theorem
If there are n variables in an LP, which is bounded and feasible, then
there are at most n support constraints.
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Constraint Sampling In a general LP

Proof - II
Theorem
If x̂N is the solution to the sampled LP (6), then

E [µ ({i : Aix̂N > bi})] ≤ n

N + 1
,

where the expectation above is taken over the random sampling of
constraints.

Proof.
Considering solving problem 6 with N + 1 constraints.

P
{
AiN+1 x̂N > biN+1

} ≤ n

N + 1
.

It is easy to show that:

P
{
AiN+1 x̂N > biN+1

}
= E [µ ({i : Aix̂N > bi})] .
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Constraint Sampling In a general LP

Proof - III

From Markov inequality:

P {µ({i|Aix̂N > bi}) > ε} ≤ 1
ε
E [µ({i|Aix̂N > bi})] ≤ n

ε(N + 1)
≤ δ.

I Proof is true for any convex constraints [1]
I Proof can also be done using PAC-learning bounds of the linear

classifier xT ã ≤ 0 for samples ã drawn according to a fix
distribution.(Vapnik-Chervonenkis [4])
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Constraint Sampling In the LP approach to ADP

How close is the solution to the relaxed problem?

Instead of finding r̃ that optimizes:

maximize cT Φr
subject to (TΦr)(x) ≥ (Φr)(x) for all x ∈ S

(8)

We want to use r̂ that optimizes:

maximize cT Φr
subject to (TΦr)(x) ≥ (Φr)(x) for all x ∈ {x1, . . . , xN}

r ∈ N
(9)

where N is a bounded convex set which will prevent the optimization
from taking too much advantage of excluded constraints.
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Constraint Sampling In the LP approach to ADP

Bound on Approximation - Theorem

Letting the constraints in problem (9) be sampled according to πα, the
”expected distribution of the initial cT P t

µ∗ weighted by the value of αt”:

πα = (1− α)cT (I − αPµ∗)−1 = (1− α)
∞∑

t=0

αtcT P t
µ∗

We get the following result:

Theorem
If N ≥ 4K

(1−α)εδ
supr∈N ‖J∗−Φr‖∞

cT J∗ then

‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c + ε ‖J∗‖1,c with probability 1− δ
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Constraint Sampling In the LP approach to ADP

Bound on Approximation - Proof

‖J∗ − Φr̂‖1,c = cT |J∗ − Φr̂|
≤ cT (I − αPµ∗)−1 |g − (I − αPµ∗)Φr̂|
= cT (I − αPµ∗)−1

(
(g − (I − αPµ∗)Φr̂)

+ 2(g − (I − αPµ∗)Φr̂)−
)

= cT (J∗ − Φr̂) + 2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)−

≤ cT (J∗ − Φr̃) + 2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)−

≤ ‖J∗ − Φr̃‖1,c +
2

1− α
π(Tµ∗Φr̂ − Φr̂)−

≤ ‖J∗ − Φr̃‖1,c +
2

1− α
µ({i|Aix̂N > bi}) sup

r∈N
‖TΦr − Φr‖∞

≤ ‖J∗ − Φr̃‖1,c + ε ‖J∗‖1,c with probability 1− δ
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Final Bound on the LP approach to ADP

Overall Bound on Approximation

Corollary
If N ≥ 4K

(1−α)εδ
supr∈N ‖J∗−Φr‖∞

cT J∗ and Φr = e for some r, then:

‖J∗ − Φr̂‖1,c ≤
2

1− α
min

r
‖Φr−J∗‖∞+ε ‖J∗‖1,c with probability 1−δ

Remaining issues:
I Does approximating c̃T x affect the solution?
I Where to get πα, the ”expected distribution of the initial cT P t

µ∗

weighted by the value of αt”?
I How to chose the basis functions?
I 2

1−α minr ‖Φr − J∗‖∞ is quite loose, can we expect better results
in practice?
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Final Bound on the LP approach to ADP
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