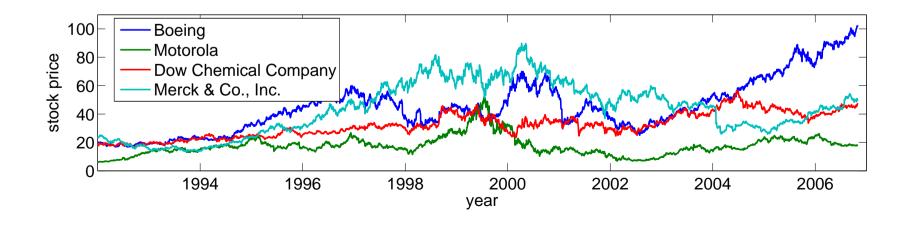
Data-Driven Optimization for Portfolio Selection

Erick Delage, edelage@stanford.edu Yinyu Ye, yinyu-ye@stanford.edu Stanford University

October 2008

Uncertainty in Portfolio Optimization

- One wants to design a portfolio of stocks
- Stock returns are highly uncertain
- Objective is to maximize daily gains in a "risk sensitive way"
- Difficulty : Little is known about the distribution of daily return for any stock $\xi \sim f_{\xi}$
- Hope : Benefit from having access to large amount of historical data to build a well-balanced portfolio



Stochastic Programming Model

Assume that tomorrow's return is drawn randomly from a distribution f_{ξ} . Solve:

 $\underset{x \in \mathcal{X}}{\text{maximize}} \quad \mathbb{E}_{f_{\xi}}[u(\xi^{\mathsf{T}}x)] \quad ,$

where $u(\cdot)$ is a concave utility function that reflects risk aversion.

Pros:

- Accounts explicitly for risk tolerance
- Somewhat tractable (sample average approx.)

Cons:

- It can be difficult to commit to a distribution f_{ξ} simply based on historical data
- The optimal portfolio can be sensitive to the choice of f_{ξ}

Dist. Robust Portfolio Optimization

Define a set of distributions \mathcal{D} which is believed to contain f_{ξ} , then choose a portfolio that has highest expected utility with respect to the worst case distribution in \mathcal{D} . Hence, solving :

$$(DRPO)$$
 maximize $\left(\min_{f_{\xi}\in\mathcal{D}} \mathbb{E}_{f_{\xi}}[u(\xi^{\mathsf{T}}x)]\right)$

In this talk:

- We propose a set \mathcal{D} that constrains the mean, covariance matrix and support of f_{ξ}
- We suggests ways of constructing \mathcal{D} based on historical data in order to be confident that it contains the true f_{ξ}
- We provide an efficient solution method for the resulting DRPO
- We present results using real stock market data

Related Work

- DRPO with Perfect Moment Information [Popescu, 2007; Natarajan et al., 2008]:
 - For some known mean and covariance matrix, solve the DRPO accounting for all distributions that have such moments
 - Cons : Sensitive to estimation error in μ and Σ
- Robust Markowitz Model [Goldfarb et al., 2003]:
 - Use historical data to define an uncertainty set \mathcal{U} for μ and Σ and solve a robust Markowitz model:

$$\underset{x \in \mathcal{X}}{\text{maximize}} \quad \left(\underset{(\mu, \Sigma) \in \mathcal{U}}{\min} \ \mu^{\mathsf{T}} x - \alpha x^{\mathsf{T}} \Sigma x \right)$$

Although this problem can be solved efficiently, it is ambiguous how it relates to a true measure of risk

Describing Distribution Uncertainty

Even when f_{ξ} is not known exactly, we believe that one can often assume that the distribution lies in a set of the form:

$$\mathcal{D}(\gamma) = \begin{cases} \mathcal{P}(\xi \in \mathcal{S}) = 1 \\ (\mathbb{E}[\xi] - \hat{\mu})^{\mathsf{T}} \hat{\Sigma}^{-1} (\mathbb{E}[\xi] - \hat{\mu}) \leq \gamma_1 \\ z^{\mathsf{T}} \mathbb{E}[(\xi - \hat{\mu})(\xi - \hat{\mu})^{\mathsf{T}}] z \leq (1 + \gamma_2) z^{\mathsf{T}} \hat{\Sigma} z , \forall z \end{cases}$$

Confidence region for f_{ξ}

Given that:

- $\hat{\mu}$ and $\hat{\Sigma}$ are empirical estimates based on M independent samples drawn from f_{ξ}
- $\boldsymbol{\mathcal{S}}$ is contained in a ball of radius R

Then, for some $\bar{\gamma}_1 = O(\frac{R^2}{M} \log(1/\delta))$ and some $\bar{\gamma}_2 = O(\frac{R^2}{\sqrt{m}} \sqrt{\log(1/\delta)})$, we can show that

$$\mathbb{P}(f_{\xi} \in \mathcal{D}(\gamma)) \ge 1 - \delta$$

Hence, if one solves the DRPO with $\mathcal{D}(\bar{\gamma})$ then he is confident that the resulting portfolio will perform well on the actual distribution f_{ξ} .

Practical Parametrization

- In practice, historical samples are not identically distributed over the whole history
- Instead, assume data is identically distributed over sub-periods of size M
- **•** Build $\mathcal{D}(\gamma_1, \gamma_2)$ as follows:
 - Use *M* most recent samples to estimate $(\hat{\mu}, \hat{\Sigma})$
 - Choose γ_1 and γ_2 such that over 1δ percent of the pairs of contiguous periods of M samples:

$$(\hat{\mu}_2 - \hat{\mu}_1)^{\mathsf{T}} \hat{\Sigma}_1^{-1} (\hat{\mu}_2 - \hat{\mu}_1) \leq \gamma_1$$

$$\hat{\Sigma}_2 + (\hat{\mu}_2 - \hat{\mu}_1) (\hat{\mu}_2 - \hat{\mu}_1)^{\mathsf{T}} \leq (1 + \gamma_2) \hat{\Sigma}_1$$

Our experiments suggest such a procedure is robust without being too conservative

Solving the DRPO Problem

Theorem 1. : Given that the utility function has the piecewise linear concave form :

$$u(y) = \min_{1 \le k \le K} a_k y + b_k ,$$

then the distributionally robust portfolio optimization problem:

$$\underset{x \in \mathcal{X}}{\text{maximize}} \quad \left(\underset{f_{\xi} \in \mathcal{D}(\gamma)}{\min} \quad \mathbb{E}_{f_{\xi}}[u(\xi^{\mathsf{T}}x)] \right)$$

- 1. can be solved in polynomial time as long as \mathcal{S} is convex
- 2. can be solved in $O(K^{3.5}n^{6.5})$ given that \mathcal{S} is ellipsoidal

Solving the DRPO Problem

If \mathcal{S} takes the form:

$$S = \{\xi | (\xi - \xi_0)^{\mathsf{T}} A (\xi - \xi_0) \le \rho\} \ , A \succeq 0$$

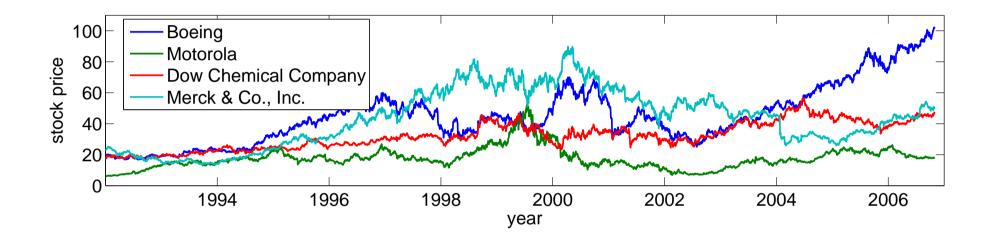
then the DRPO reduces to the Semi-Definite Program:

$$\begin{split} \underset{x,Q,q,t,P,p,s,\tau}{\text{minimize}} & \gamma_2 \operatorname{trace}(\hat{\Sigma}Q) - \hat{\mu}^{\mathsf{T}} Q \hat{\mu} + t + \operatorname{trace}(\hat{\Sigma}P) - 2\hat{\mu}^{\mathsf{T}} p + \gamma_1 s \\ \text{subject to} & \begin{bmatrix} P & p \\ p^{\mathsf{T}} & s \end{bmatrix} \succeq 0 \ , \ p = -q/2 - Q \hat{\mu} \\ & \begin{bmatrix} Q & q/2 + a_k x/2 \\ q^{\mathsf{T}}/2 + a_k x^{\mathsf{T}}/2 & t + b_k \end{bmatrix} \succeq -\tau_k \begin{bmatrix} A & -A\xi_0 \\ -\xi_0^{\mathsf{T}} A & \xi_0^{\mathsf{T}} A \xi_0 - \rho \end{bmatrix} \ , \ \forall k \\ & \tau_k \ge 0 \ , \ \forall k \ , \ Q \succeq 0 \ , \ x \in \mathcal{X} \ , \end{split}$$

which can be solved efficiently using an interior point algorithm.

Experiments with Historical Data

30 stocks were tracked over horizon (1992-2007)



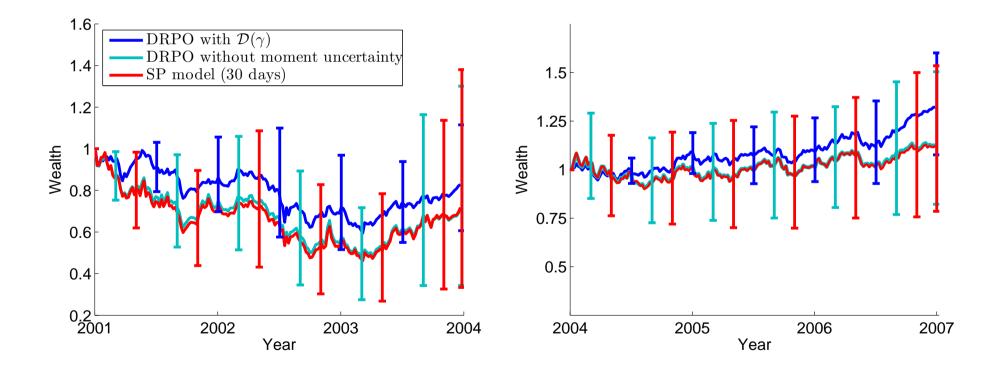
Experiments with Historical Data

An experiment consists of trading 4 stocks over (2001-07).

- Use (1992-2001) to choose γ_1 and γ_2
- Update portfolio on daily basis
- **9** Estimate $\hat{\mu}$ and $\hat{\Sigma}$ based on a 30 days period
- **DRPO** with $\mathcal{D}(\gamma)$ is compared to :
 - DRPO without moment uncertainty
 - Stochastic Program using empirical distribution over last 30 days

Experimental Results I

Comparison of wealth evolution in 300 experiments conducted over the years 2001-2007. For each model, the periodical 10% and 90% percentiles of wealth are indicated.



Experimental Results II

In finer details:

Method	2001-2004		2004-2007	
	Avg. yearly return	10-perc.	Avg. yearly return	10-perc.
DRPO with $\mathcal{D}(\gamma)$	0.944	0.846	1.102	1.025
DRPO w/o moment uncertainty	0.700	0.334	1.047	0.936
SP model (30 days)	0.908	0.694	1.045	0.923

- 79% of the time, our DRPO outperformed both models
- On average accounting for moment uncertainty led to a relative gain of 1.67

Summary

- Derived a DRPO which accounts for limited distribution information present in historical data
- Proposed a set $\mathcal{D}(\bar{\gamma})$ with probabilistic guarantees in data-driven problems
- Empirically justified the need to account for distribution & moment uncertainty in portfolio optimization

We encourage using a distributionally robust criterion as an objective or constraint; hence, hedge against the risks of making investment decisions that rely on an inaccurate probabilistic model

Questions & Comments ...

Delage E., Data-Driven Optimization for Portfolio Selection - p. 16/16