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Uncertainty in Portfolio Optimization

One wants to design a portfolio of stocks

Stock returns are highly uncertain

Objective is to maximize daily gains in a “risk sensitive way”

Difficulty : Little is known about the distribution of daily return for any
stock ξ ∼ fξ

Hope : Benefit from having access to large amount of historical data
to build a well-balanced portfolio
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Stochastic Programming Model

Assume that tomorrow’s return is drawn randomly from a distribution fξ.
Solve:

maximize
x∈X

Efξ
[u(ξTx)] ,

where u(·) is a concave utility function that reflects risk aversion.

Pros:

Accounts explicitly for risk tolerance

Somewhat tractable (sample average approx.)

Cons:

It can be difficult to commit to a distribution fξ simply based on
historical data

The optimal portfolio can be sensitive to the choice of fξ
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Dist. Robust Portfolio Optimization

Define a set of distributions D which is believed to contain fξ, then choose
a portfolio that has highest expected utility with respect to the worst case
distribution in D. Hence, solving :

(DRPO) maximize
x∈X

(

min
fξ∈D

Efξ
[u(ξTx)]

)

.

In this talk:

We propose a set D that constrains the mean, covariance matrix and
support of fξ

We suggests ways of constructing D based on historical data in order
to be confident that it contains the true fξ

We provide an efficient solution method for the resulting DRPO

We present results using real stock market data
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Related Work

DRPO with Perfect Moment Information [Popescu, 2007; Natarajan
et al., 2008]:

For some known mean and covariance matrix, solve the DRPO
accounting for all distributions that have such moments

Cons : Sensitive to estimation error in µ and Σ

Robust Markowitz Model [Goldfarb et al., 2003]:

Use historical data to define an uncertainty set U for µ and Σ and
solve a robust Markowitz model:

maximize
x∈X

(

min
(µ,Σ) ∈ U

µTx − αxTΣx

)

Although this problem can be solved efficiently, it is ambiguous
how it relates to a true measure of risk
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Describing Distribution Uncertainty

Even when fξ is not known exactly, we believe that one can often assume
that the distribution lies in a set of the form:
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Confidence region forfξ

Given that:

µ̂ and Σ̂ are empirical estimates based on M independent samples
drawn from fξ

S is contained in a ball of radius R

Then, for some γ̄1 = O(R2

M
log(1/δ)) and some γ̄2 = O( R2

√
m

√

log(1/δ)), we
can show that

P(fξ ∈ D(γ)) ≥ 1 − δ .

Hence, if one solves the DRPO with D(γ̄) then he is confident that the
resulting portfolio will perform well on the actual distribution fξ.
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Practical Parametrization

In practice, historical samples are not identically distributed over the
whole history

Instead, assume data is identically distributed over sub-periods of
size M

Build D(γ1, γ2) as follows:

Use M most recent samples to estimate (µ̂, Σ̂)

Choose γ1 and γ2 such that over 1 − δ percent of the pairs of
contiguous periods of M samples:

(µ̂2 − µ̂1)
TΣ̂−1

1 (µ̂2 − µ̂1) ≤ γ1

Σ̂2 + (µ̂2 − µ̂1)(µ̂2 − µ̂1)
T � (1 + γ2)Σ̂1

Our experiments suggest such a procedure is robust without being
too conservative
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Solving the DRPO Problem

Theorem 1. : Given that the utility function has the piecewise linear concave form :

u(y) = min
1≤k≤K

aky + bk ,

then the distributionally robust portfolio optimization problem:

maximize
x∈X

(

min
fξ∈D(γ)

Efξ
[u(ξTx)]

)

1. can be solved in polynomial time as long as S is convex

2. can be solved in O(K3.5n6.5) given that S is ellipsoidal
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Solving the DRPO Problem

If S takes the form:

S = {ξ|(ξ − ξ0)
TA(ξ − ξ0) ≤ ρ} , A � 0

then the DRPO reduces to the Semi-Definite Program:

minimize
x,Q,q,t,P,p,s,τ

γ2 trace(Σ̂Q) − µ̂TQµ̂ + t + trace(Σ̂P ) − 2µ̂Tp + γ1s

subject to





P p

pT s



 � 0 , p = −q/2 − Qµ̂





Q q/2 + akx/2

qT/2 + akxT/2 t + bk



 � −τk





A −Aξ0

−ξT

0
A ξT

0
Aξ0 − ρ



 , ∀k

τk ≥ 0 , ∀ k , Q � 0 , x ∈ X ,

which can be solved efficiently using an interior point algorithm.
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Experiments with Historical Data

30 stocks were tracked over horizon (1992-2007)
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Experiments with Historical Data

An experiment consists of trading 4 stocks over (2001-07).

Use (1992-2001) to choose γ1 and γ2

Update portfolio on daily basis

Estimate µ̂ and Σ̂ based on a 30 days period

DRPO with D(γ) is compared to :

DRPO without moment uncertainty

Stochastic Program using empirical distribution over last 30 days
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Experimental Results I

Comparison of wealth evolution in 300 experiments conducted over the
years 2001-2007. For each model, the periodical 10% and 90%
percentiles of wealth are indicated.
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Experimental Results II

In finer details:

Method 2001-2004 2004-2007

Avg. yearly return 10-perc. Avg. yearly return 10-perc.

DRPO with D(γ) 0.944 0.846 1.102 1.025

DRPO w/o moment uncertainty 0.700 0.334 1.047 0.936

SP model (30 days) 0.908 0.694 1.045 0.923

79% of the time, our DRPO outperformed both models

On average accounting for moment uncertainty led to a relative gain
of 1.67
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Summary

Derived a DRPO which accounts for limited distribution information
present in historical data

Proposed a set D(γ̄) with probabilistic guarantees in data-driven
problems

Empirically justified the need to account for distribution & moment
uncertainty in portfolio optimization

We encourage using a distributionally robust criterion as an objective
or constraint; hence, hedge against the risks of making investment
decisions that rely on an inaccurate probabilistic model

Delage E., Data-Driven Optimization for Portfolio Selection – p. 15/16



Questions & Comments ...

... Thank you!
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