Data-Driven Optimization for Portfolio Selection

Erick Delage, edelage@stanford.edu
Yinyu Ye, yinyu-ye@stanford.edu
Stanford University

October 2008
Uncertainty in Portfolio Optimization

- One wants to design a portfolio of stocks
- Stock returns are highly uncertain
- Objective is to maximize daily gains in a “risk sensitive way”
- Difficulty: Little is known about the distribution of daily return for any stock $\xi \sim f_\xi$
- Hope: Benefit from having access to large amount of historical data to build a well-balanced portfolio
Stochastic Programming Model

Assume that tomorrow’s return is drawn randomly from a distribution f_ξ. Solve:

$$\maximize_{x \in X} \mathbb{E}_{f_\xi} \left[u(\xi^\top x) \right],$$

where $u(\cdot)$ is a concave utility function that reflects risk aversion.

Pros:

- Accounts explicitly for risk tolerance
- Somewhat tractable (sample average approx.)

Cons:

- It can be difficult to commit to a distribution f_ξ simply based on historical data
- The optimal portfolio can be sensitive to the choice of f_ξ
Dist. Robust Portfolio Optimization

Define a set of distributions \mathcal{D} which is believed to contain f_ξ, then choose a portfolio that has highest expected utility with respect to the worst case distribution in \mathcal{D}. Hence, solving:

$$
(\text{DRPO}) \quad \max_{x \in \mathcal{X}} \left(\min_{f_\xi \in \mathcal{D}} \mathbb{E}_{f_\xi}[u(\xi^T x)] \right).
$$

In this talk:

- We propose a set \mathcal{D} that constrains the mean, covariance matrix and support of f_ξ
- We suggest ways of constructing \mathcal{D} based on historical data in order to be confident that it contains the true f_ξ
- We provide an efficient solution method for the resulting DRPO
- We present results using real stock market data
Related Work

- DRPO with Perfect Moment Information [Popescu, 2007; Natarajan et al., 2008]:
 - For some known mean and covariance matrix, solve the DRPO accounting for all distributions that have such moments
 - Cons: Sensitive to estimation error in μ and Σ

- Robust Markowitz Model [Goldfarb et al., 2003]:
 - Use historical data to define an uncertainty set \mathcal{U} for μ and Σ and solve a robust Markowitz model:
 $$\max_{x \in \mathcal{X}} \left(\min_{(\mu, \Sigma) \in \mathcal{U}} \mu^T x - \alpha x^T \Sigma x \right)$$
 - Although this problem can be solved efficiently, it is ambiguous how it relates to a true measure of risk
Describing Distribution Uncertainty

Even when f_ξ is not known exactly, we believe that one can often assume that the distribution lies in a set of the form:

$$\mathcal{D}(\gamma) = \left\{ f_\xi \mid \begin{align*}
\mathbb{P}(\xi \in S) &= 1 \\
(\mathbb{E}[\xi] - \hat{\mu})^T\hat{\Sigma}^{-1}(\mathbb{E}[\xi] - \hat{\mu}) &\leq \gamma_1 \\
z^T\mathbb{E}[(\xi - \hat{\mu})(\xi - \hat{\mu})^T]z &\leq (1 + \gamma_2)z^T\hat{\Sigma}z, \quad \forall z
\end{align*} \right\}.$$

Delage E., Data-Driven Optimization for Portfolio Selection – p. 6/16
Confidence region for f_{ξ}

Given that:

- $\hat{\mu}$ and $\hat{\Sigma}$ are empirical estimates based on M independent samples drawn from f_{ξ}
- S is contained in a ball of radius R

Then, for some $\tilde{\gamma}_1 = O\left(\frac{R^2}{M}\log(1/\delta)\right)$ and some $\tilde{\gamma}_2 = O\left(\frac{R^2}{\sqrt{m}}\sqrt{\log(1/\delta)}\right)$, we can show that

$$\mathbb{P}(f_{\xi} \in D(\gamma)) \geq 1 - \delta$$

Hence, if one solves the DRPO with $D(\tilde{\gamma})$ then he is confident that the resulting portfolio will perform well on the actual distribution f_{ξ}.
Practical Parametrization

- In practice, historical samples are not identically distributed over the whole history.
- Instead, assume data is identically distributed over sub-periods of size M.
- Build $\mathcal{D}(\gamma_1, \gamma_2)$ as follows:
 - Use M most recent samples to estimate $(\hat{\mu}, \hat{\Sigma})$.
 - Choose γ_1 and γ_2 such that over $1 - \delta$ percent of the pairs of contiguous periods of M samples:
 \[
 (\hat{\mu}_2 - \hat{\mu}_1)^T \hat{\Sigma}_1^{-1} (\hat{\mu}_2 - \hat{\mu}_1) \leq \gamma_1 \\
 \hat{\Sigma}_2 + (\hat{\mu}_2 - \hat{\mu}_1)(\hat{\mu}_2 - \hat{\mu}_1)^T \preceq (1 + \gamma_2) \hat{\Sigma}_1
 \]
- Our experiments suggest such a procedure is robust without being too conservative.
Theorem 1. : Given that the utility function has the piecewise linear concave form:

\[
u(y) = \min_{1 \leq k \leq K} a_k y + b_k,
\]

then the distributionally robust portfolio optimization problem:

\[
\maximize_{x \in X} \left(\min_{f \xi \in \mathcal{D}(\gamma)} \mathbb{E}_{f \xi}[u(\xi^T x)] \right)
\]

1. can be solved in polynomial time as long as \(S \) is convex
2. can be solved in \(O(K^{3.5} n^{6.5}) \) given that \(S \) is ellipsoidal
Solving the DRPO Problem

If S takes the form:

$$S = \{ \xi \mid (\xi - \xi_0)^T A(\xi - \xi_0) \leq \rho \} , \ A \succeq 0$$

then the DRPO reduces to the Semi-Definite Program:

$$\min_{x,Q,q,t,P,p,s,\tau} \gamma_2 \text{trace}(\hat{\Sigma} Q) - \hat{\mu}^T Q \hat{\mu} + t + \text{trace}(\hat{\Sigma} P) - 2\hat{\mu}^T p + \gamma_1 s$$

subject to

$$\begin{bmatrix} P & p \\ p^T & s \end{bmatrix} \succeq 0 , \ p = -q/2 - Q\hat{\mu}$$

$$\begin{bmatrix} Q & q/2 + a_kx/2 \\ q^T/2 + a_kx^T/2 & t + b_k \end{bmatrix} \succeq -\tau_k \begin{bmatrix} A & -A\xi_0 \\ -\xi_0^T A & \xi_0^T A\xi_0 - \rho \end{bmatrix} , \ \forall k$$

$$\tau_k \geq 0 , \ \forall k \ , \ Q \succeq 0 \ , \ x \in \mathcal{X} \ ,$$

which can be solved efficiently using an interior point algorithm.
Experiments with Historical Data

30 stocks were tracked over horizon (1992-2007)
Experiments with Historical Data

An experiment consists of trading 4 stocks over (2001-07).

- Use (1992-2001) to choose γ_1 and γ_2
- Update portfolio on daily basis
- Estimate $\hat{\mu}$ and $\hat{\Sigma}$ based on a 30 days period
- DRPO with $D(\gamma)$ is compared to:
 - DRPO without moment uncertainty
 - Stochastic Program using empirical distribution over last 30 days
Experimental Results I

Comparison of wealth evolution in 300 experiments conducted over the years 2001-2007. For each model, the periodical 10% and 90% percentiles of wealth are indicated.
Experimental Results II

In finer details:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRPO with $\mathcal{D}(\gamma)$</td>
<td>0.944</td>
<td>0.846</td>
</tr>
<tr>
<td>DRPO w/o moment uncertainty</td>
<td>0.700</td>
<td>0.334</td>
</tr>
<tr>
<td>SP model (30 days)</td>
<td>0.908</td>
<td>0.694</td>
</tr>
</tbody>
</table>

- 79% of the time, our DRPO outperformed both models
- On average accounting for moment uncertainty led to a relative gain of 1.67
Summary

- Derived a DRPO which accounts for limited distribution information present in historical data.
- Proposed a set $\mathcal{D}(\tilde{\gamma})$ with probabilistic guarantees in data-driven problems.
- Empirically justified the need to account for distribution & moment uncertainty in portfolio optimization.

- We encourage using a distributionally robust criterion as an objective or constraint; hence, hedge against the risks of making investment decisions that rely on an inaccurate probabilistic model.
Questions & Comments ...

... Thank you!