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discuss the technical challenges of implementing a multi-variate extension of
Dybvig (1988) model and discuss the possible solutions.

Abstract
The derivation of the bi-variate Payoff Distribution model by Kat and Palaro
(2005) represents an interesting contribution to the performance evaluation and
asset pricing literature. Nonetheless, their approach for evaluating the function
is significantly flawed. Recently, Papageorgiou et al. (2007) have proposed a
much more robust approach to modeling the marginal distributions and copula
functions, and also extend the results of Schweizer (1995) to evaluate the model
and derive an optimal dynamic trading (hedging) strategy. In this paper, we will

1 Introduction
Over the last couple of years, considerable attention paid within the hedge
fund industry to the development replicating strategies. Many of the large
banks have launched beta replication funds that attempt to use a portfolio
of liquid assets to replicate the time-series properties of various hedge fund
strategies.1 The tracking portfolio generally consists in exposure to market,
credit and liquidity premia. However, the replicating portfolio may consist
of assets that are not necessarily employed by managers (e.g., high yield
bonds may explain exposure of hedge equity to liquidity risk).

An interesting alternative replication method was proposed by Amin
and Kat (2003) and more recently extended by Kat and Palaro (2005).
Based on the Payoff Distribution Model put forth by Dybvig (1988), the
authors attempt to replicate hedge fund returns not by identifying the
return generating betas, but identifying a systematic trading strategy
that can be used to generate the distribution of the hedge fund returns.
Kat and Palaro (2005) show that for most hedge funds, their statistical
properties can be replicated by investing in an alternative dynamic
strategy.

The derivation of the bivariate Payoff Distribution Model by Kat and
Palaro (2005) represents an interesting contribution to the performance
evaluation and asset pricing literature. The implementation proposed by
Kat and Palaro is however subject to several shortcomings and inconsis-
tencies. In this paper we will address these problems and propose some
techniques for overcoming these issues.

2 The Payoff Function
In Kat and Palaro (2005), the authors show that given two risky assets S(1)

and S(2), it is possible to “reproduce” the statistical properties of the joint
composed returns R(1)

0,T = log(S(1)

T /S(1)

0 ) and R(3)
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T /S(3)

0 ), in the
sense that there exists a function g such that the joint distribution of R(1)

0,T

and g(R(1)

0,T , R(2)

0,T) is the same as the joint distribution of R(1)

0,T and R(3)

0,T . Note
that one does not replicate the value of R(3)

0,T at period T, but instead one
wants to imitate its distribution properties like its expectation, volatility,
skewness, kurtosis, as well as dependence measures with respect to R(1)

0,T

such as Pearson and Spearman correlations to name a few.
The payoff’s return function g is easily shown to be calculable using

the marginal distribution functions F1, F2 and F3 of S(1)

T , S(2)

T , S(3)

T , and the
copulas C1,2 and C1,3 associated respectively with the joints returns
(R(1)
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0,T) and (R(1)
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0,T). For details on its derivations see Kat and Palaro
(2005). The exact expression for g is given by
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where Q (x, α) is the order α quantile of the conditional law of R(3)
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solve for the corresponding daily hedging strategy for assets S(1) and S(2) .
The compatibility problem between the law of the daily returns and
monthly returns is not addressed by the authors. According to Sklar’s
theorem (Sklar, 1959), the law of the bivariate vector R0,T is determined
by F1, F2 and C1,2. However, the joint law of the returns (Rt)

T
t=1 must be

compatible with the relation

R0,T =
T∑

t=1

Rt. (2)

Let’s consider, for the sake of simplicity, that returns are independent
and identically distributed. In the bivariate Gaussian case, it is easy to
find the law of the returns (Rt)

T
t=1 given the law of R0,T . In fact, even if the

marginal distribution of R(1)

0,T and R(2)

0,T are Gaussian and their copula C1,2

is not Gaussian, the margins of R(1)
t and R(2)

t are Gaussian. However, there
is no known way to find out what the common copula of the Rt ’s should
be so that the copula of the sum match the copula C1,2. Although copula
provide us with much flexibility in terms of modeling the dependence,
there is however no proof to this day that the statistical properties of copula
functions are divisible. This compatibility condition is not a trivial matter.
In fact, if for any T, the relation (2) is satisfied with independent and
identically distributed returns (Rt)

T
t=1, then the law of R0,T must be infinitely

divisible. Such laws can be characterized completely (see Barndorff-Nielsen
et al. (2001) or Sato (1999)). For example, it is known that the univariate
Student distribution is infinitely divisible, but the common law of the
associated returns (Rt)

T
t=1 satisfying (2) is not known. Note that Johnson’s

law, proposed in Kat and Palaro (2005), is not infinitely divisible. Therefore,
it should not serve as a model for the distribution of R(1)

0,T or R(2)

0,T if the
daily returns are assumed to be independent.

The lesser of the two problems pertains to the choice of estimation
technique. IFM is a two-stage estimation process: first the marginal
distributions are estimated and then these distributions are used in
order to calculate the parameters of the copula. Kim et al. (2007) show
that an inappropriate choice of models for the margins may have
detrimental effects on the estimation of the dependence parameter
per se. A much more robust method consists of separating the estimation
for the margins and the dependence. Ideally the estimation of the depend-
ence should rely on normalized ranks and be independent of the marginal
distributions. For a detailed description see Genest et al. (1995).

3.1.1 Overcoming the aggregation problems

In order to deal with the compatibility restriction, instead of estimating
the law of the monthly returns R0,T for assets S(1) and S(2), it is preferable to
take the opposite point of view, by first determining a model for the daily
returns (Rt)

T
t=1, and then solving for the associated law for the composed

bivariate return R0,T . The important issue is select bivariate laws whose
aggregation properties are known. A good candidate for the law of the
returns Rt is a mixture of bivariate Gaussian distributions. It is easy to
check that the law of R0,T will then be also a Gaussian mixture. Properties
of Gaussian mixtures, as well as estimation and goodness-of-fit are treated
in Papageorgiou et al. (2007). We do not need to concern ourselves with
the distribution of asset S(3) since it is not used in the trading strategy.
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Using properties of copulas, e.g. Nelsen (1999), the conditional distributions
can be expressed in terms of the margins and the associated copulas.

P
(

R(2)

0,T ≤ y|R(1)

0,T = x
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.

Once the function has been calculated all that remains is to find the
trading strategy that will allow to replicate the function. In essence, we
can view the function as an option that cannot be traded, so we need to
replicate the payoff of the option with the greatest possible precision by
trading the underlying securities.

3 Replication and the Shortcomings of
the Kat-Palaro Approach
There are three steps in the replication procedure.

• Modelling part:
– Estimation of the parameters of the marginal distribution

functions F1, F2 and F3 of S(1)

T , S(2)

T , S(3)

T , and the copulas C1,2 and
C1,3 associated respectively with the joints returns (R(1)

0,T , R(2)

0,T)

and (R(1)

0,T , R(3)

0,T).
• Calculate the payoff function g.
• Replication part:

– Choose an appropriate replication method;
– Find the initial amount v0 to be invested in the portfolio and find

an hedging strategy ϕ.

3.1 Modeling issues

The correct calculation of the payoff function relies therefore on the precise
modeling of the statistical properties of our three assets. The marginal
distributions F1, F2 and F3 must be capable of capturing the necessary
skewness and kurtosis, and a proper empirical test must be implemented
in order to select the two copulas C1,2 and C1,3. Any mis-specification of
the statistical properties will induce an error in the calculation of the
payoff function g, which, in turn, will not capture the statistical proper-
ties of R(3)

0,T . Kat and Palaro (2005) use the Gaussian, Student and Johnson
distributions to model the monthly returns of the three assets and five
copula functions (Gaussian, Student, Frank, Gumbel and symmetrized
Joe-Clayton) to model the dependence. The estimation and choice of
marginal distribution and copula is performed using the Inference for
Margins (IFM) method.

There are two significant shortcomings related to the modeling 
approach proposed by Kat and Palaro (2005). The first issue relates to the
aggregation properties of the distributions and copula functions, and
represents a fundamental flaw in the modeling approach. The second
issue is also not trivial and relates to the choice of estimation technique.

The main flaw in the Kat and Palaro (2005) model has to do with the
distribution of the returns R1, . . . , RT versus the distribution of R0,T . In
their paper, Kat and Palaro (2005) start by fixing the law of the monthly
returns, distribution functions F1, F2, F3 and the copulas C1,2, C1,3, and then
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A concern in the modeling of the daily returns can be presence of
serial correlation in the daily time series. One interesting extension of
Papageorgiou et al. (2007) would be to be to the model joint returns of
assets S(1) and S(2) as a mixture of bivariate Gaussian distribution with
a Markovian dependence in the mixtures. One could also consider mixture
of bivariate GARCH processes. The aggregation properties and estimation
of multi-variate mixtures of GARCH processes have been studied by Hafner
and Rombouts (2007).

3.2 Hedging issues

Having modeled the return distributions and dependence structures, we
can then calculate the payoff function g. The final step is to find a dynamic
trading strategy that allows us to best approximate this function. The
hedging strategy proposed by Kat and Palaro (2005) is quite simple. They use
a trinomial approach proposed by He (1990) even though the law of the
(daily) returns

Rt =
{

log
(

S(1)
t /S(1)

t−1

)
, log

(
S(2)

t /S(2)

t−1

)}T

is not necessarily Gaussian.
In their calculations they implemented the technique of Boyle and Lin

(1997), a trinomial approach that incorporates transactions costs. This
approach is clearly inefficient, specially since the distributions of the traded
assets S(1) and S(2), and the hedge fund S(3) are clearly not Gaussian. In
order to get rid of this inconsistency which is common in option pricing,
Papageorgiou et al. (2007) propose an alternative methodology adapted
from American option pricing techniques. The authors extend the results
of Schweizer (1995) by selecting the portfolio (v0, ϕ) such as to minimize
the (square) root mean square hedging error (RMSHE)

√
E[β2

T {VT(v0, ϕ) − CT}2],

where βT is the discount factor and ϕ is a dynamic replication strategy.
The value, at period t, of the portfolio defined by the initial value v0 and
strategy ϕ is denoted by Vt(v0, ϕ). Note that there is no “risk-neutral”
evaluation involved, all calculations are carried out under the objective
probability measure.

3.2.1 Optimal hedging

Suppose that (�, P,F ) is a probability space with filtration
F = {F0, . . . ,FT}, under which the stochastic processes are defined.
Assume that the price process St is d-dimensional, i.e. St = (S(1)

t , . . . , S(d)
t ).

A dynamic replicating strategy can be described by a (deterministic)
initial value v0 and a sequence of random weight vectors ϕ = (ϕt)

T
t=0 ,

where for any j = 1, . . . , d, ϕ
(j)
t denotes the number of parts of assets S(j)

invested during period (t − 1, t]. Because ϕt may depend only on the
values S0, . . . , St−1 , the stochastic process ϕt is assumed to be pre-
dictable. Initially, ϕ0 = ϕ1 , and the portfolio initial value is v0 . It fol-
lows that the amount initially invested in the non risky asset is
v0 − ∑d

j=1 ϕ
(j)
1 S(j)

0 = v0 − ϕT
1 S0 .

Since the hedging strategy must be self-financing, it follows that for
all t = 1, . . . , T,

βtVt(v0, ϕ) − βt−1Vt−1(v0, ϕ) = ϕT
t (βtSt − βt−1St−1). (3)

Using the self-financing condition (3), it follows that

βT VT = βT VT(v0, ϕ) = v0 +
T∑

t=1

ϕT
t (βtSt − βt−1St−1). (4)

The replication strategy problem for a given payoff C is thus equivalent
to finding the strategy (v0, ϕ) so that the hedging error

GT(v0, ϕ) = βT VT(v0, ϕ) − βT C (5)

is as small as possible. Here, the RMSHE measures the quality of replication.
It is therefore natural to suppose that the prices S(j)

t have finite second
moments. We further assume that the hedging strategy ϕ satisfies a similar
property, namely that for any t = 1, . . . , T, ϕ�

t (βtSt − βt−1St−1) have finite
second moments. Note that these two technical conditions were also made
by Schweizer (1995).

For simplicity, set �t = St − E(St|Ft−1), t = 1, . . . , T . Under the above
moment conditions, the conditional covariance matrix �t of �t exists
and is given by

�t = E
{
�t�

�
t |Ft−1

}
, 1 ≤ t ≤ T. (6)

In Schweizer (1995), the author treats the case d = 1 and assumes a
restrictive boundedness condition. Here, in contrast, we treat the general
d-dimensional case and we only suppose that �t is invertible for all
t = 1, . . . , T . This was implicitly part of the boundedness condition of
Schweizer (1995).

If �t is not invertible for some t, there would exists a ϕt ∈ Ft−1 such
that ϕ�

t St = ϕ�
t E(St|Ft−1), that is, ϕ�

t St is predictable. Our assumption can
be interpreted as saying that the genuine dimension of the assets is d.

3.2.2 Difference between optimal hedging and hedging
under Black-Scholes setting

To compare the two methods, simply take T = 1, βT = 1, and d = 1. In this
case, the solution for optimal hedging yields ϕ∗ = Cov{�S1, C(S1)}/Var(�S1),
where �S1 = S1 − S0, and v∗

0 = E{C(S1)} − ϕ∗E(�S1).
For the Black-Scholes setting, vBS

0 = E
{

C
(

S0eσ Z−σ 2 /2
)}

and
ϕBS = E

{
eσ Z−σ 2 /2C′

(
S0eσ Z−σ 2 /2

)}
, with σ 2 = Var{log(S1/S0)}, where

Z ∼ N(0, 1), provided C is differentiable. See, e.g., Broadie and
Glasserman (1996).

In general, ϕ∗ �= ϕBS and v∗
0 �= vBS

0 , so

E[{V1(v
∗
0, ϕ∗) − C(S1)}2] < E

[{V1(v
BS
0 , ϕBS) − C(S1)}2

]
.

For an analysis of the (discrete) hedging error in a Black-Scholes setting,
see, e.g., Wilmott (2006).

3.2.3 Hedging Error Comparison

To illustrate the advantage of the optimal hedging strategy proposed in
Papageorgiou et al. (2007), we compare the mean hedging error and the
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RMSHE as defined in equation (5) for the optimal hedging and for the
Kat-Palaro approach. For this example, we specify assets S(1), S(2) and S(3)

as follows:

• Asset S(1) is a proxy for the typical institutional Canadian pension
fund as described in Benefits Canada Review (May 2007).

• Asset S(2) is a diversified portfolio of typical market exposures,
specifically global equity indices, credit indices and commodity indices

• Asset S(3) that is being replicated is chosen to be gaussian distribution
with an annual volatility of 12%.

We model bivariate daily and monthly distributions of assets S(1) and
S(2) over the period from 2000 to 2007 using normal mixtures, as detailed
in Papageorgiou et al. (2007). This leads to 7 regimes for the daily mixture
and 2 regimes for the monthly mixture. We do not specify the required
dependence between S(3) and S(1), instead we run the hedging comparison
for different levels of dependence between the two assets. More precisely,
we allow Kendall’s Tau to vary from −0.9 to 0.9 for three different copulas
(Gaussian, Clayton and Frank) and measure the impact of this dependency
variable between S(1) and S(3) on hedging error measures. To compare the
optimal hedging replication method and the Kat-Palaro method, 10 000
scenarios of 22 daily returns (1 trading month) were simulated for the 
assets S(1) and S(2) . For each scenario, the terminal value VT of the portfolio
was computed and the hedging error is calculated. The plots of the hedging
errors are presented below.

The results lend strong support to the hedging approach put forth
in Papageorgiou et al. (2007). Hedging Errors for the “Optimal Hedging”
algorithm are centered on 0 with a low sensitivity to Kendall’s Tau as
well as to the type of copula. The Kat-Palaro algorithm is considerably
more sensitive to the level of dependence (Kendall’s tau) and copula family.
This is a direct result of their approach being nested in the Black-Scholes
setting and can lead to large hedging errors. It is also important to note
that the Optimal Hedging approach systematical produces smaller Root
Mean Square Hedging Errors (RMSHE) providing further validation of the
Papageorgiou et al. (2007) approach.

4 Conclusion
In the paper, we have discussed some of the challenges that one is
confronted with in implementing the bivariate Payoff Distribution
Model proposed by Kat and Palaro (2005). We exposed some of the
flaws in the modeling and the dynamic trading strategy, and proposed
some techniques for overcoming these inconsistencies. Finally, we
showed that the hedging algorithm proposed in Papageorgiou et al.
(2007) provides a more precise replication of the payoff function that
the Black-Scholes approach put forth by Kat and Palaro (2005).

What remains to be seen is how well these statistical replication
techniques fare in practice. Desjardins Global Asset Management should
soon be able to provide some insight into this issue. They have been
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Figure 1: Hedging error measures.
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working with the authors of Papageorgiou et al. (2007) and have recently
launched the first statistical replication fund that is open to investors.
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