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PRELIMINARY
Abstract

We provide new finite sample nonparametric inference methods for the mean
of a bounded random variable. For this purpose, we prove that the impossibility
theorem of Bahadur and Savage (1956) does not apply in this case. Next, we
observe that confidence intervals for the mean of a bounded random variable
can actually be derived by projection from confidence intervals for the adequate
distribution function and investigate finite sample nonparametric methods based
on improved Kolmogorov Smirnov statistics and likelihood ratio improvement.
Further, we apply all studied inference methods on the Foster, Greer and

Thorbecke (FGT, 1984) poverty measures. We show that FGT poverty measures
are actually expectations of some bounded random variables, namely a mixing
between a continuous bounded random variable and a mass at the poverty line.
So, all inference methods for the mean of bounded random variable apply to
this case. We study the relative performance of such methods.
Monte Carlo simulations demonstrate the necessity of using finite sample

nonparametric approaches. The asymptotic and bootstrap inference methods
appear not reliable in finite sample. On the contrary, the finite sample non-
parametric inference methods we propose are robust to the framework and the
sample size we use. Confidence intervals we get have a very good coverage prob-
ability (always close to 100%) and a good precision. In addition, we provide
explicit expressions which make them very easy to compute.

Keywords : nonparametric inference ; mean of bounded variables ; Wald,
Rao and likelihood ratio principles of improvement ; poverty measures.
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1 Introduction
Since a couple of decades, there is a growing interest for poverty and inequality
studies. People are more and more conscious of the importance of controlling
the evolution of poverty and inequalities but studies in this area remain descrip-
tive in the majority of cases and neglect statistical inference. More recently,
some researches have investigated the performance of two types of inferences for
poverty and inequality measures : inference based on asymptotic distributions
and bootstrap methods (see Beran (1988) [4], Kakwani (1993) [31], Dardonni
and Forcina (1999) [16], Biewen (2002)[7] Davidson and Duclos (2000) [17],
Cowell and Flachaire (2002)[15], Davidson and Flachaire (2004)[18]). Most of
them recommend the use of bootstrap inference rather than that of asymptotic
one. They found that asymptotic approximations do not perform well for both
poverty and inequality measures. In the opposite, standard bootstrap inference
is proved to perform better than asymptotic inference but its results remains
unsatisfactory, especially for inequality measures.

No study has investigated the applicability and the performance of finite
sample non parametric inference methods for poverty and inequality measures.
This paper does that for poverty measures, in particular for the Foster, Greer
and Thorbecke (FGT, 1984) [23]. For this purpose, we show that the FGT
poverty measures are actually expectations of a mixing between a continuous
bounded random variable and a mass at the poverty line. Given that this mixing
is a bounded random variable, we observe that one can use any finite sample
nonparametric inference method for the mean of a bounded random variable to
perform inference on the FGT poverty measures. However, following Bahadur
and Savage (1956)[3], one can think that this problem has no solution. In fact,
Bahadur and Savage (1956) proved that non-parametric inference cannot be
performed for the mean of a random variable when observations are independant
and identically distributed from an unknown distribution function with finite
mean [see Dufour (2003)[20] for more details]. But given that the support of
the distribution function we study is bounded, this impossibility theorem does
not apply in this case. Nonparametric inference methods can be investigated.
Such methods have been provided in the literature by Anderson (1969)[1],

Hora and Hora (1990)[28] and Fishman (91)[25]. However, comparing the per-
formance of these methods to that of asymptotic and bootstrap inference for the
mean of a random variable with Beta distribution, Sutton and Young (1997)[39]
show that the first methods are strongly reliable but yield confidence intervals
of larger width than the latest ones. In this paper, we propose improved finite
sample nonparametric inference methods for the mean of a bounded random
variable.

The contribution of this paper is in two directions.
First, we provide solutions to the problem of performing finite sample non-

parametric inference for the mean of a bounded random variable. The key idea
of our approach is to observe that confidence intervals for the mean of a bounded
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random variable can actually be derived by projection from confidence intervals
for the adequate distribution function (see Dufour (1990)[19]). Moreover, any
confidence interval for a distribution function with a bounded support can be
used for that purpose. We investigate finite sample nonparametric methods
based on various versions of the Kolmogorov Smirnov statistic (standard one
and standardized and studentized ones). We derive improved methods using
modified standardized and studentized Kolmogorov Smirnov statistics and like-
lihood based statistics that dominates Kolmogorov Smirnov statistics (according
to Berk and Jones (1979) [6]).
Second, we apply all inference methods on the Foster, Greer and Thorbecke

(FGT, 1984)[23] poverty measures using the definition of these measures as ex-
pectations of some bounded random variables. The inference methods we derive
provide new inference methods for poverty measures. Monte Carlo simulations
compare the performance of the confidence intervals based on such methods to
that of the previously used inference approaches. The performance is evaluated
with respect to two main characteristics : the accuracy and the precision rep-
resented respectively by the level of confidence and the width of the confidence
interval. The results demonstrate the necessity of using finite sample nonpara-
metric approaches. They confirm that asymptotic inference has a very bad
performance in finite sample and gives a very low level of confidence. Bootstrap
inference also fails to give accurate results in finite sample when the distribution
presents a high probability of zero values. Moreover, even when the probability
of zero values is low, the bootstrap confidence interval has a very bad precision
in small sample. On the contrary, the finite sample nonparametric inference
methods we propose are totally robust to the the sample size and the form of
the distribution being studied. Confidence intervals we get have a very good
coverage probability which is always close to 100% and a good precision. Lastly,
we provide explicit expressions which make the confidence bands very easy to
compute.

The remaining of this paper is organized as follows. Section 2 presents the in-
ference methods for the mean of a bounded random variable which are available
in the literature. Asymptotic methods (asymptotic and bootstrap inference)
and exact exact methods (Anderson (1969)[1], Hora and Hora (1990)[28] and
Fishman (91)[25] inference methods) are exposed.
The third section presents the projection principle we stated before and in-

terprets the Anderson’s confidence interval as an illustration of this principle. It
also generalizes the Anderson’s confidence interval and presents some improv-
ment we perform on this method.
Sections 4 and 5 present improved nonparametric confidence intervals for

the mean of a bounded random variable. These improvements are done in three
directions : according to the Wald, the Rao and the likelihood ratio principles.
We improve the confidence interval for distribution function using these princi-
ples and apply the projection principle to get improved confidence intervals for
the mean of a bounded random variable.
Section 6 applies the inference methods we discuss on the Foster, Greer and
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Thorbecke (FGT, 1984) poverty measures. We present briefly the FGT poverty
measures and show how the previous inference methods can be applied to them.
We present Monte Carlo evidence of the good performance of the finite sample
nonparametric inference methods we provide.
Section 7 concludes.

2 Confidence Intervals for theMean of a Bounded
Random Variable : a Review

There exists a variety of methods that perform inference for the mean of a
bounded random variable. These methods are devided in two groups : asymp-
totic and exact methods.
The asymptotic methods are essentially asymptotic and bootstrap inference

methods. They are certainly the most widely used inference methods but given
the asymptotic arguments they rely, they suffer from limits in finite sample.
In parallel, exact non parametric procedures also exist but are not well

known. One can cite among them Anderson (1969)[1], Hora and Hora (1990)[28]
and Fishman (91)[25].
The relative performance of these asymptotic and exact procedures has been

studied by Sutton and Young (1997)[39]. They compute the level of confidence
and the width (which represent respectively the accuracy and the precision) of
the confidence intervals these methods yields for the mean of a Beta distribution
with different values of Beta parameters. Their results show that asymptotic
and standard boostrap procedures are not reliable in small samples but appear
to be more precise than nonparametric inference methods. In fact, their level
of confidence is lower than the theoritical one but the width of their intervals is
better (less) than the width of the exact method intervals. Moreover, the preci-
sion of the asymptotic method intervals is alterated when the random variable
have a high probability of being null. On the contrary, the accuracy of exact
methods is very good (almost always 100%) but is obtained at the cost of a
worse precision than the asymptotic methods.
In a very close area, other studies provide one-sided nonparametric inference

methods for the mean of particular random variables. Breth (1976)[10] uses the
Kolmogorov confidence interval for distribution function to derive nonparamet-
ric confidence intervals for a mean using censored distribution. Breth, Maritz
and Williams (1978)[11] provide a distribution-free lower confidence limit for the
mean of a nonnegative random variable using the Kolmogorov upper bound for
distribution function and Kaplan (1987)[32] does so using the Markov inequality
and a martingale argument.
Note that nonparametric confidence bands for the mean of a bounded ran-

dom variable lead to one-sided confidence interval when the random variable
has only one bound.
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2.1 The asymptotic methods

2.1.1 Asymptotic inference

This inference method is well known and widely used. It relies on convergence
theorems that state the asymptotic normality of most of the statistics in the
literature.
Let X be a random variable with a distribution function F (x). To perform

asymptotic inference for the expected value of X, E(X), one can use the usual
t-statistic

W =
\E(X)−E(X)

\
V [\E(X)]

The empirical mean X is often used as an estimation of E(X).
Given that W is asymptotically normally distributed, one can build a (1−α)

level confidence interval for E(X) by

\E(X)− z(1−α
2 )
∗
∙
\

V [\E(X)]
¸1/2

≤ E(X) ≤\E(X) + z(1−α
2 )
∗
∙
\

V [\E(X)]
¸1/2

(1)

where z(1−α
2 )
is the (1− α

2 ) percentile of the standard normal distribution.
The asymptotic inference has been often criticized with respect to its poor

finite sample performance due to the low speed of convergence of the real dis-
tributions of statistics. Confidence intervals built on this basis are not reliable
at all. They yield a level of confidence far smaller than the targeted one (see
Sutton and Young (1997)[39]).

2.1.2 Bootstrap inference

As asymptotic inference, bootstrap inference is well known. A variety of boot-
strap methods have been implemented and used to peform adequate inference in
accordance with the properties of the studied data. The percentile-t bootstrap
is one of the simpler bootstrap procedures.
Let X andW defined as above. The percentile-t bootstrap confidence interval

is similar to the asymptotic one where the asymptotic normal critical values are
replaced by those from the bootstrapped distribution. That is :

\E(X)−DW
(1−α

2 )
∗
∙
\

V [\E(X)]
¸1/2

≤ E(X) ≤\E(X)−DW
(α2 )
∗
∙
\

V [\E(X)]
¸1/2

(2)

where DW
(α2 )

and DW
(1−α

2 )
are respectively the α

2 and (1 − α
2 ) percentiles of

the bootstrapped distribution of W.
This method has been often proved to yield better finite sample performance

than the asymptotic one but remain unsatisfactory in multiple cases (see Sut-
ton and Young (1997)[39]). In fact, in presence of distributions with heavy
tails, multiple outliers values or a high probability of having null values, the
percentile-t booststrap fails to give accurate results. One must investigate the
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origin of the bootstrap’s problem and use the adequate bootstrap method to get
some acceptable to results. Moreover, bootstrap inference involves a resampling
procedure which is very computationnally expensive.All this leads against the
use of the bootstrap based inference methods.

2.2 The exact methods

2.2.1 The Hora and Hora (1990) confidence interval

Hora and Hora (1990)[28] provide a finite sample (1 − α) percent confidence
interval for the mean µ of a bounded random variable. The confidence interval
they derive is symmetric with respect to the sample mean.

Theorem 1 [Hora and Hora (90)] Let X be a random variable with
an unknown continuous cumulative distribution function F (x) with range [a, b]
(for numbers a < b) such that F (a) = 0 and F (b) = 1. Suppose that we have a
sample of n draws from F (x). Then a (1 − α) percent confidence interval for
the mean of X is defined byXn ±∆α where Xn is the empirical mean and ∆α

is the Kolmogorov -Smirnov percentile value.

In the opposite of the asymptotic methods, the Hora and Hora confidence
interval totally distribution-free which performance doesn’t rely at all on sample
sizes. It is easy to compute and depend only on the confidence level, the sample
mean and the Kolmogorov-smirnov percentile value. Sutton and Young (1997)
show that this confidence interval yield a very high level of coveragebut its
precision is far worse than the precision of asymptotic methods.

2.2.2 The Fishman (1991) confidence interval

Fishman (1991)[25] derives a finite sample (1 − α) percent confidence interval
for the mean µ of a bounded random variable. Its confidence interval is based
on the Hoeffding’s inequality (1963) :

Pr[Xn − µ ≥ ε] ≤ enf(ε,µ)

where f(ε, µ) = (ε+ µ) ln
µ

ε+ µ
+ (1− ε− µ) ln

1− µ

1− ε− µ
for 0 < ε < 1− µ

Theorem 2 [Fishman (91)] Let X1, ...,Xn denote iid random variables
with E(Xi) = µ and Pr[0 ≤ Xi ≤ 1] = 1. Then

Pr[µ1(Xn, n, α) < µ < µ2(Xn, n, α)] ≥ 1− α (3)

with

µ1(Xn, n, α) = {t, 0 < t ≤ Xn ≤ 1 and enf(Xn−t,t) = α/2} for Xn > 0

= 0 for Xn = 0
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µ2(Xn, n, α) = {t, 0 ≤ Xn ≤ t < 1 and enf(t−Xn,1−t) = α/2} for Xn < 1

= 1 for Xn = 1

The Fishman’s confidence interval applies to bounded random variable of
range [0, 1] but can be generalized for any support [a, b].
This confidence interval is one of the most general nonparametric confidence

intervals for a bounded random variable which exist in the literature. Sutton
and Young (1997) show that the Fishman’s inference method yields confidence
intervals of a high confidence level than the Hora and Hora (1990) method and
better precision. However its width is higher than the width of the asymptotic
methods. Moreover, the confidence bands are not explicitly defined. They
are computed as a zero of a function. As a consequence, the accuracy of this
inference method relies in a large part on the accuracy of the iterative procedure
that will be used to derive the bounds µ1 and µ2. Second, this confidence interval
depends on the empirical mean Xn which is very sensitive to outliers. These
remarks reduce the reliability of the Fishman’s confidence interval.

2.2.3 The Anderson (1969) confidence interval

Anderson (1969) [1] derives a finite sample nonparametric confidence interval
for the mean of a continuous bounded random variable. Its confidence interval
involves the significance points of the Kolmogorov goodness-of-fit test.

Theorem 3 [Anderson (1969)] Let X be a random variable with an un-
known continuous cumulative distribution function F (x) with range [a, b] (for
numbers a < b) such that F (a) = 0 and F (b) = 1. Suppose that we have a
sample of n draws from F (x) and let x(1) < ... < x(n) be the ordered observa-
tions. We state x(0) = a and x(n+1) = b. Let Fn(x) be the empirical cumulative
distribution function of the sample.
Let β and γ define a (1− α) confidence interval for F (x) i.e. such that

P [Fn(x)− β ≤ F (x) ≤ Fn(x) + γ, ∀x] = 1− α

The following inequalities hold simultaneously with probability 1− α.

E[X] ≤ 1

n

⎡⎣(r + 1) x(r+1) + nX
j=r+2

x(j)

⎤⎦+ β
£
b− x(r+1)

¤
for r = [nβ]

(4)

E[X] ≥ 1

n

⎡⎣n−s−1X
j=1

x(j) + (s+ 1) x(n−s)

⎤⎦− γ
£
x(n−s) − a

¤
for s = |nγ|

The Anderson’s (1969) inference method has some properties similar to the
Hora and Hora (1990) and the Fishman’s (1991) ones. In fact, it provides a
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non parametric confidence interval and is robust to sample size. Moreover,
Sutton and Young (1997) show that the Anderson’s inference method provides
an interval with a level of confidence of 100% but a larger width than the
asymptotic and bootstrap one. However, the width of this confidence interval is
better than the width of the previous exact methods and its confidence interval
is explicitly defined and is very simple to compute. As a last remark, note that
the Anderson’s confidence interval apply only for bounded continuous random
variables. This restricts its applicability compared to the others exact methods
which hold for all bounded variables.
Anderson (1969) generalizes his confidence interval to the mean of any

strictly increasing function of X over the interval [a,b].

Corollary 1 Under the hypotheses of theorem 3, if g(x) is a strictly increas-
ing function over the interval [a,b] then the following inequalities hold simulta-
neously with probability (1− α)

E[g(X)] ≤ 1

n

⎡⎣(r + 1) g[x(r+1)] + nX
j=r+2

g[x(j)]

⎤⎦+ β
¡
g(b)− g[x(r+1)]

¢
for r = [nβ]

(5)

E[g(X)] ≥ 1

n

⎡⎣n−s−1X
j=1

g[x(j)] + (s+ 1) g[x(n−s)]

⎤⎦− γ
¡
g[x(n−s)]− g(a)

¢
for s = |nγ|

3 Generalization of the Anderson’s Confidence
Interval

Anderson (1969) provides a very inference method for the mean of a bounded
continuous random variable. Excepted its restriction to continuous cases, this
inference method is the best nonparametric inference method for the mean of
bounded random variables. In this section we investigate the ways to generalize
it and further, we discuss how to improve it.

3.1 A projection principle

Proposition 1 [A projection principle] Let X be a bounded random variable
with a continuous distribution function F (x) with range [a, b] for numbers a < b.
Suppose that a n-sample of X is available. If a ( 1 − α) confidence interval for
the distribution function F (x) is defined by

FL
n (x) ≤ F (x) ≤ FU

n (x) ∀x
Then the following inequalities hold with probability ( 1− α).

b−
Z b

a

FU
n (x) dx ≤ E[X] ≤ b−

Z b

a

FL
n (x) dx
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Proof Propoition 1 follows directly from the definition of the mean of X :

E[X] =

Z b

a

x dF (x) = b−
Z b

a

F (x) dx

The implications of proposition 1 are very helpful for the problem we are
interested with.
First, it appears that non parametric confidence bands for the mean can be

derived from non parametric confidence bands for the distribution function F(x)
by a simple projection argument. Moreover, any confidence interval for a distri-
bution function with bounded support can be used to this end. Anderson(1969)
chooses the Kolmogorov’s confidence interval for the distribution function of X
for that. As an illustration, we recover the Anderson’s confidence interval with
this method in appendix 2. We use other confidence intervals which provides of
better performance for the distribution function.
Another implication of proposition 1 is the properties of the confidence inter-

val for the mean it induces. In fact, since the projection conserves the properties
of the confidence interval for the distribution function, the confidence interval
for the mean will exhibit the same advantages of the initial confidence interval
but will suffer from the same limits too. As an application, the confidence inter-
val of Anderson has the same propoerties than the Kolmogorov’s one. That is
first, for F continuous, the bounds it defines are independent of the distribution
F that is tested under the null. This makes the Anderson’s confidence interval
very easy to compute. Second, the confidence interval is too conservative which
leads to high level of confidence but large width. Last, the Kolmogorov con-
fidence interval is uniform with respect to the empirical distribution function
Fn(x).This implies a bad adjustment for the tails of the distribution which can
be improved to derive better inference for the mean. We use these limits to
generalize the Anderson’ confidence interval and improve it.

As a last remark, let’s draw the attention of the reader to the fact that this
projection principle can be stated in a more general case. In fact, the same
argument apply to general functions of the distribution function F(x). This
has been stated and used in various areas for several studies as Dufour (1990),
Dufour and Neifar (1994) [21], Dufour and Taamouti (1999) [22] etc.
The corollary 1 of Anderson (1969) is an application of this general principle.

As a consequence, the new inference methods for the mean we provide in the
remaining of the paper can be applied to any other functional of distribution
functions. This includes all the centered and non centered moments of X and
several other possibilities.

3.2 Generalisation to non continuous case

The last subsection highlights some identified limits of the Anderson’s confi-
dence interval. The first one of these is its restriction to continuous cases. The

9



following proposition uses a property of the Kolmogorov’s confidence interval
for distribution function to generalize the Anderson’s confidence interval to any
bounded random variable.

Definition : A confidence interval is conservative at the level (1 − α) if
its level of confidence is greater or equal to the nominal level (1 − α) for all
distributions and greater to (1− α) for at least one distribution.

Proposition 2 The exact confidence interval of Anderson (1969) is conser-
vative for the mean of any bounded random variable.

Proof This proposition is a direct application of the conservative prop-
erty of the Kolmogorov confidence interval for non continuous cases as stated
by Kolmogorov (1941) and proven by Noether (1963), Conover (1972) and
Gleser(1985).
A much simpler proof is provided as follows. Define Dn the Kolmogorov

statistic for any continuous distribution function F

Dn = max
x

| bFn(x)− F (x) |

Let G(x) be another distribution function. Then,

Dn = sup
x
| Fn(x)−F (x) |= sup

v∈[0,1]

¯̄̄̄
¯ 1n

nX
k=1

I(F [xk]≤v) − v

¯̄̄̄
¯ ≥ supv∈V

¯̄̄̄
¯ 1n

nX
k=1

I(G[xk]≤v) − v

¯̄̄̄
¯

for a V ⊂ [0, 1].

In other words, the (1−α) level Anderson’s confidence interval for the mean
of continuous bounded random variable defines a confidence interval with level
greater equal to (1− α) for the mean of any bounded random variable.

3.3 Improving the Anderson’s confidence interval for bounded
non continuous variables

The performance of confidence intervals are commonly measured by its level of
confidence (accuracy) and its width (precision). Given that the Anderson’s con-
fidence interval provides a confidence interval of higher level for non continuous
cases one can expect that its width will be higher than what we would want.
This corresponds to the second limit of the Anderson’s confidence interval we
highlighted in the beginning of this section.
A good idea to avoid this outcome is to compute a more adequate confidence

interval for the distribution function we get. For this purpose, we must compute
by simulation the adequate values of β and γ according to the general form of
the distribution function we deal with. This can be done easily and provides a
more precise confidence interval for the mean.
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We illustrate this method for a special case we are interested in. The interest
of this special case will appear at the end of this paper with the application we
perform for poverty measures.

Corollary 2 Let Y be a continuous random variable with distribution F and
X be the transformed random variable X = ( z−Yz )α I [0≤Y≤z] . The adequate
Kolmogorov statistic for goodness of fit test is of the form

Dn = max
v∈[p,1]

¯̄̄̄
¯ 1n

nX
k=1

I[G[xk]≤v] − v

¯̄̄̄
¯ (6)

where p = Proba(Y > z)

Proof : See appendix 3.

Note that the distribution function G(x) is such that G(x) is continuous on
(a, b] and G(a) = p > 0 and G(b) = 1. As a consequence GX(X) is a mixing :

GX(X)

½
= p with probability p
∼ U(p,1] with probability 1-p

The adequate distribution of Dn can be easily computed numerically in this
case using the following procedure :

• generate n observations from a mixing of p with probability p and an
uniform law U(p,1] with probability 1-p

• Compute the Kolmogorov statistic for this sample
• repeat N times
The adjusted values of β and γ are simply the adequate quantiles of the

distribution of Dn.
Note that the same procedure applies to continuous case where the only

difference is that the values of the distribution function are drawn from an
uniform law (FY (Y ) ∼ U[0,1]).

In practice, the true value of p is generally unknown but can be estimated on
data. The following proposition says how this estimation affects the performance
of the computed confidence interval.

Proposition 3 [Monotonicity] : Let G1(x) and G2(x) be two distribution
functions with range [a,b]. Suppose that G1(x) and G2(x) are non continuous
at a finite number of points belonging respectively to sets V 1 and V 2 with V 1

⊆ V 2. If,
∀ xl ∈ V 1 ∩ V 2, G1(xl) ≤ G2(xl)

then the confidence interval for G1(x) is conservative for the distribution func-
tion G2(x).
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A special case of this proposition is given by the following corollary.

Corollary 3 : Let G1(x ) and G2(x ) be two distribution functions with
range [a,b]. If G1(x ) and G2(x ) are continuous on (a,b] such that G2(a) =
p2 > p1 = G1(a) => 0 and G1(b) = 1 = G2(b)
Then the confidence interval for G1(x) is conservative for the distribution

function G2(x).

The following corollary follows as a consequence of the previous proposition
and corollary.

Corollary 4 : The confidence interval for the mean of the random variable
with distribution function G1(x) is also conservative for the mean of the random
variable which distribution function is G2(x).

4 Inference Based on Non Uniform Confidence
Bands

The previous section provides the mean to avoid the first two limits of the
Anderson’s confidence interval we gave before. We present another improvement
of this confidence interval based on non uniform versions of the Kolmogorov
statistic.
Intuitively, the choice of such statistics can be easily motivated. In fact, in

addition to its conservative nature, the Kolmogorov confidence interval has been
often criticized because of it is uniform with respect to the empirical distribution
function. This is another source of imprecision for the projected confidence
interval for the mean.

4.1 The Anderson Darling and Eicker Statistics

In the literature, weighted versions of the Kolmogorov statistic have been pro-
posed to provide better inference for the tail of distributions.
One of these statistics is the standardized Kolmogorov statistic provided by

Anderson and Darling (1952) [2]. It is defined as follows :

ADn = sup
x

√
n | Fn(x)− F (x)

F 1/2(x)[1− F (x)]1/2
|

Another statistic is the studentized Kolmogorov statistic provided by by
Eicker (1979)[24] :

En = sup
x
Vn with Vn =

⎧⎪⎨⎪⎩
√
n | Fn(x)−F (x)

F
1/2
n (x)[1−Fn(x)]1/2

| if Fn(x) /∈ {0, 1}

0 if Fn(x) ∈ {0, 1}
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As the standard Kolmogorov statistic, these statistics provide confidence
intervals for continuous distribution functions.

Proposition 4 [The AD confidence interval for distribution func-
tion] Let x(1), ...x(n) be an ordered iid sample drawn from a continuous distri-
bution function F (x). Let cAD such that Pr[En ≤ cAD] = 1 − α. Then the
following inequalities define a (1− α) confidence interval for F(x)

FL
n (x) ≤ F (x) ≤ FU

n (x) (7)

where FL
n (x) =

2Fn(x) +
c2AD
n −

√
∆

2(1 +
c2AD
n )

and FU
n (x) =

2Fn(x) +
c2AD
n +

√
∆

2(1 +
c2AD
n )

with ∆ =

∙
2Fn(x) +

c2AD
n

¸2
− 4F 2n(x)

∙
1 +

c2AD
n

¸

Proof cAD is defined by

P [sup
x

√
n | Fn(x)− F (x)

F 1/2(x)[1− F (x)]1/2
|≤ cAD] = 1− α

It follows that with probability 1− α

(1 +
c2AD
n
)F 2(x)−

∙
2Fn(x) +

c2AD
n

¸
F (x) + F 2n(x) ≤ 0 ∀ x

This is the case if and only if the inequalities in (7) are satisfied.

Proposition 5 [The Eicker confidence interval for distribution func-
tion] Let x(1), ...x(n) be an ordered iid sample drawn from a continuous distribu-
tion function F (x). Let cE such that Pr[En ≤ cE ] = 1−α. Then, the following
inequalities define a (1− α) confidence interval for F(x)

Fn(x)− cE√
n
F 1/2n (x)[1− Fn(x)]

1/2 ≤ F (x) ≤ Fn(x) +
cE√
n
F 1/2n (x)[1− Fn(x)]

1/2

(8)

Proof cE is defined by

P [sup
x

√
n | Fn(x)− F (x)

F
1/2
n (x)[1− Fn(x)]1/2

|≤ cE ] = 1− α

It follows that with probability 1− α

−cE ≤
√
n[Fn(x)− F (x)]

F
1/2
n (x)[1− Fn(x)]1/2

≤ cE ∀ x

This leads to the inequalities (8).
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Figure 2 (see appendix 1) shows that the Anderson-Darling and Eicker sta-
tistics yield confidence intervals for distribution function that provide a better
adjustment for the tail of distribution than the standard Kolmogorov statistic.
In fact the Eicker statistic provides confidence regions that contract to zero
width in the tail. The improvement of the Anderson Darling statistic is less
clear. Its width converges to (c2AD/n)/(1 +

c2AD
n ) in the tails of the distribution

which is to compare to γ + β, the uniform width of the standard Kolmogorov
confidence interval (in the Anderson’s theorem, 1969). We simulate the criti-
cal values of cAD, γ and β for n = 100, 200, 500 and 1000. The results show
that the width of the uniform confidence interval is better than those of the
AD confidence interval in the tails of the distribution for n = 100 but the AD
confidence interval become better in the tails for n ≥ 200.
Applying the principle of projection we outlined for the Anderson’s confi-

dence interval, we derive a (1− α) confidence interval for the mean of X based
on the AD and Eicker confidence intervals for F (x).

Theorem 4 [Confidence interval for the mean of a bounded contin-
uous random variable based on the Anderson Darling statistic]
Let x(1), ...x(n) be an ordered iid sample drawn from a continuous distribution

function F(x) with range [a,b]. Define x(0) = a and x(n+1) = b Let FL
n (x) and

FU
n (x) represent the AD confidence interval for F(x). Then a 1− α confidence
interval for E(X) is

E(X) ≤
nX

k=1

[FL
n (x(k))− FL

n (x(k−1))] ∗ x(k) + [1− FL
n (x(n))] ∗ b (9)

E(X) ≥ FU
n (x(0)) ∗ a+

nX
k=1

[FU
n (x(k))− FU

n (x(k−1))] ∗ x(k)

Proof : The proof of this theorem is a direct application of the principle of
projection. Proposition 4 states that

FL
n (x(k)) ≤ F (x) ≤ FU

n (x(k)) ∀k = 1, ..., n (10)

Given the definition of FL
n (x) and FU

n (x), one can see that F
L
n (x(k)) ≥ 0 ∀k

and FU
n (x(k)) ≤ 1 ∀k. As a consequence, the confidence bands of Owen are

effective for all x(i). The distribution which satisfies the first inequality in (10)
with the largest mean is the distribution with jumps FL

n (x(1)) at x(1) ; F
L
n (x(k))−

FL
n (x(k−1)) at x(k) for k=2,...,n and 1 − FL

n (x(n)) at x(n+1) = b. Idem, The
distribution which satisfies the second inequality in (10) with the smallest mean
is the distribution with jumps FU

n (x(0)) at x(0) = a ; FU
n (x(k))−FU

n (x(k−1)) at
x(k) and 1− FU

n (x(n)) = 0 at x(n+1) = b. This yields the inequalities (9).

Theorem 5 [Confidence interval for the mean of a bounded contin-
uous random variable based on the Eicker statistic]

14



Let x (1), ...x(n) be an ordered iid sample drawn from a continuous dis-
tribution function F(x) with range [a,b]. Define x(0) = a and x(n+1) = b. Let
cE such that Pr[En ≤ cE ] = 1 − α. The following inequalities define a more
than (1− α) confidence interval for the the mean of X.

E(x) ≤
"
kIE + 1

n
− cE√

n

(µ
kIE + 1

n

¶1/2µ
1− kIE + 1

n

¶1/2)#
∗ x(kIE+1)

+
nX

k=kIE+2

"
1

n
− cRE√

n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)

E(x) ≥
kSEX
k=1

"
1

n
+

cE√
n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)

+

"
1− kSE

n
− cE√

n

(µ
kSE
n

¶1/2µ
1− kSE

n

¶1/2
+ ε

)#
∗ x(kSE+1)

where

kIE = [
nc2E

(n+ c2E)
] and kSE = [

n2

(n+ c2E)
]

and [k] represents the integer part of k.

Proof : See appendix 4.

For the same reason as previously mentioned for the former inference meth-
ods, the following corollary holds.

Corollary 5 The non uniform confidence intervals for distribution func-
tion and the corresponding ones for the mean of a continuous bounded random
variable are conservative for the non continuous case.

Moreover, for the same reason than the Anderson’s confidence interval, the
Eicker and Anderson Darling inference methods can be adjusted to yield infer-
ence of better performance for bounded non continuous random variables.

4.2 The Regularized Anderson Darling and Eicker Statis-
tics

The previous subsection two non uniform confidence intervals for distribution
functions and the corresponding confidence intervals for the mean based on
some statistics provided by the literature. These inference methods are proved
to improve the previous one based on the non weighted Kolmogorov statistic.
We investigate a better improvement of the non weighted Kolmogorov sta-

tistic inference method. In fact, we study the power of the goodness of fit tests
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using the Anderson-Darling and Eicker statistics. The first part of Table1 (see
appendix 1) prove these tests suffer from a problem of poor power of test against
some specific alternatives which can be avoided. We improve the power of these
tests by modifying the weight of the previous statistics.
These new statistics can be viewed as some regularized versions of the

Anderson-Darling and Eicker statistics. They are obtained by shifting the de-
nominator of the statistics by an additionnal term ε(x) :

ADR
n = sup

x

√
n | Fn(x)− F (x)

F 1/2(x)[1− F (x)]1/2 + ε(x)
| (11)

ER
n = sup

x

√
n | Fn(x)− F (x)

F
1/2
n (x)[1− Fn(x)]1/2 + ε(x)

|

Table1 (appendix 1) shows that this regularization have a major impact
on the power of the goodness-of-fit tests. We provide below the confidence
intervals for distributions functions and for the mean using such statistics. As a
consequence of the improvement in the power of tests, theses confidence intervals
will perform better than the previous ones.
However, we saw that the width of the Anderson-Darling confidence inter-

val converges to a non zero constant at the tails of the distributions leading to
worse inference than the Eicker confidence interval. We expect the Regularized
AD statistic to perform less than the regularized Eicker one for a given func-
tion ε(x). We prefer to escape this discussion here. Moreover, the Regularized
Anderson confidence interval for distribution function and for the mean are ex-
pressed relatively to the roots of an equation of degree 4. Relatively to the
poor gain in performance these confidence intervals yield compared to those of
the Regularized Eicker inference method, the generated extra complexity can
appears too expensive. For these reasons, we choose not to provide these results
here.

Proposition 6 [The Regularized Eicker confidence interval for dis-
tribution function] Let x(1), ...x(n) be an ordered iid sample drawn from a con-
tinuous distribution function F (x). Let cRE such that Pr[ER

n ≤ cRE ] = 1− α.
Then the following inequalities define a (1− α) confidence interval for F(x)

Fn(x)−cRE√
n

n
F 1/2n (x)[1− Fn(x)]

1/2 + ε(x)
o
≤ F (x) ≤ Fn(x)+

cRE√
n

n
F 1/2n (x)[1− Fn(x)]

1/2 + ε(x)
o

(12)

Proof : cRE is defined by

P [sup
x

√
n | Fn(x)− F (x)

F
1/2
n (x)[1− Fn(x)]1/2 + ε(x)

|≤ cRE ] = 1− α

It follows that with probability 1− α

−cRE ≤
√
n[Fn(x)− F (x)]

F
1/2
n (x)[1− Fn(x)]1/2 + ε(x)

≤ cRE ∀ x
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This leads to the inequalities (12).

As expected, this confidence interval generally provides a better performance
than the existing ones. Figure 2 (see appendix 1) shows that this confidence
interval is of better width than the uniform one for the tails of the sample.
It also shows that this confidence interval performs much better in the center
of the distribution compared to the Eicker’s confidence interval. However its
width converges to ε(x) in the tail of the distribution whereas those of the Eiker
confidence interval converge to zero. For this reason, this later is narrower in
the very last values of X. However, in general, the regularized Eicker statistic
yield a better inference than the Eicker statistic.
In this section, we use a constant ε(x) and choose it to maximize the power

of the goodness of fit tests the statistics induce. However, it is clear that one can
investigate a function ε(x) that would give narrower confidence interval for the
distribution function F (x). Intuitively, such function would give lower values in
the center of the distribution and larger ones in the tails.
We apply the principle of projection we outlined for the Anderson’s confi-

dence interval to derive a (1 − α) confidence interval for the mean of X based
on this later confidence interval for F (x). Non constant ε(x) would give quite
similar formulas.

Theorem 6 [Improved Nonparametric confidence interval for the
mean of a bounded continuous random variable]

Let x (1), ...x(n) be an ordered iid sample drawn from a continuous dis-
tribution function F(x) with range [a,b]. Define x(0) = a and x(n+1) = b. Let
cRE such that Pr[ER

n ≤ cRE ] = 1−α. The following inequalities define a more
than (1− α) confidence interval for the the mean of X.

E(x) ≤
"
kIRE + 1

n
− cRE√

n

(µ
kIRE + 1

n

¶1/2µ
1− kIRE + 1

n

¶1/2
+ ε

)#
∗x(kIRE+1)+

cREε√
n
∗b

+
nX

k=kIRE+2

"
1

n
− cRE√

n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)

E(x) ≥ cREε√
n
∗a+

"
1− kSRE

n
− cRE√

n

(µ
kSRE
n

¶1/2µ
1− kSRE

n

¶1/2
+ ε

)#
∗x(kSRE+1)

+

kSREX
k=1

"
1

n
+

cRE√
n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)

where
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kIRE =

"
2cREεn

3/2 + c2REn+
√
∆I

2(c2RE + n)

#
and ∆I = c3REn

2[cRE − 4cREε2 + 4εn1/2]

kSRE =

"
c2REn+ 2n

2 − 2cREεn3/2 −
√
∆S

2(c2RE + n)

#
and ∆S = c3REn[cREn− 4cREnε2 + 4εn3/2]

and [k] represents the integer part of k.

Proof : See appendix 5.

For the same reason as previously mentioned, the following corollary holds.

Corollary 5 The improved confidence intervals for distribution function and
for the mean of a continuous bounded random variable are conservative for the
non continuous case.

Moreover, for the same reason than the Anderson’s confidence interval, the
improved Anderson’s confidence interval can also be adjusted to yield inference
of better performance for the mean of non continuous bounded random variables.

4.3 Choice of epsilon

We introduce in this section two new statistics for goodness of fit tests. As
explained above, the addition of the term ε in the denominator of the statistics
En and ADn improve the power of the goodnees of fit tests these tests provide.
A natural question arises : how to choose ε ? We restrict ourself to deal first
with constant ε. Given that, it seems logical to choose ε such that to maximize
the power of the goodness of fit test. One can guess that not only one ε may
be adequate. It is reasonble to expect one “optimal” value by tested hypothesis
and perhaps by sample size too. So how to discriminate among all these values
?
Our objective is to improve the power of the goodness of fit tests performed

with standardized or studentized Kolmogorov statistics but in the same time to
distort the original distributions the less necessary. In other words, we look for
the lowest ε that increase sufficiently the power of the performed tests.
Table 1 (see appendix 1) relates the results we get for specified hypotheses

and n = 500. We choose n = 500 because the simulations we perform for our
application are for n = 100, 200, 500 and 1000. We perfom goodness of fit tests
for the Singh Maddala distribution which we use for our distribution but also for
the Normal distribution which is the most widely used by studies. For the case
we choose, one can see first that the presence of ε highly increases considerably
the power of the tests : ε = 0 is not a good choice. Second, the power of test is
very low for small ε but becomes acceptable with moderately larger values. We
see that ε l 0.15 is suffisant to yield an acceptable power of test. More greater
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values of ε yield small increases of the power that are not significant. We will
use this value in the remaining of the paper.
Note that one can investigate the optimal ε for each sample size and dis-

tribution to improve the performance of the inference method we propose. We
perform tests for different n but we don’t provide the results here. However,
as we expected, the choice of ε would in general depend on n. Moreover, the
impact of the distribution function will be less important as the sample size
increase. For example, for n=100 the additionnal increase in the power of test
is more significant as we increase the value of ε. The optimal value of ε would
be ε l 0.5 for the normal case and ε l 0.3 for the Singh Maddala case.

5 Likelihood Based Nonparametric Confidence
Interval for the Mean of a Bounded Random
Variable

The projection principle we stated earlier says that any confidence interval for
the distribution function of a bounded random variable can be used to perform
inference for the mean of this later. Using this, one can investigate other confi-
dence intervals that dominate the Kolmogorov one to try to improve the results
we already get.
Berk and Jones (1979)[6] propose two statistics based on a likelihood crite-

rion instead of the moment one to standardize the Kolmogorov statistic. They
show that these statistics are more efficient, in the sense of Bahadur efficiency,
than any weighted Kolmogorov statistic. Owen (1995)[36] uses one of these
statistics to derive non parametric confidence bands for continuous distribution
functions.

Theorem 7 [Owen (1995)] Let x1, ...xn be an iid sample from a continuous
distribution function F(x). Define the likelihood criterion

Rn = sup
−∞≤x≤+∞

K[Fn(x), F (x)]

where K(bp, p) = bp log( bp
p
) + (1− bp) log(1− bp

1− p
)

Let λn define a 1− α confidence interval for Rn i.e

Pr[Rn > λn] = 1− α

Then a 1− α confidence interval for the distribution function is

L(x) ≤ F (x) ≤ H(x) (13)

with L(x) = min{p , K[Fn(x), p] ≤ λn} and H(x) = max{p , K[Fn(x), p] ≤ λn}

The intuition of this confidence interval is not so hard. In fact, remember
that nFn(x) is binomial with parameters n and F(x). Thus, −nK(bp, p) is the
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log-likelihood ratio for the probability parameter p based on a binomial obser-
vation of nbp successes in n trials. It follows that Owen’s confidence bands are
computed by performing a likelihood ratio test on the distribution of Fn(x).
Only candidates F (x) with sufficiently large likelihood at each x belong to the
confidence interval.
Figure 2 shows that the resulting interval is narower in the tails and wider

in the center than the uniform Kolmogorov confidence interval. Moreover, it
also performs better than the regularized Eicker confidence interval. However,
for the same reason as that stated before its width is higher than that of the
Eicker confidence interval at the very end of the sample.
Owen (1995) gives an approximation for λn for n=1,...,1000 and α = 0.05

and 0.01.

λ0.95n =
1

n
[3.0123 + 0.4835 log(n)− 0.00957 log2(n)− 0.001488 log3(n)]

for n = 2, ..., 100

=
1

n
[3.0806 + 0.4894 log(n)− 0.02086 log2(n)] for n = 101, ..., 1000

and

λ0.99n =
1

n
[−4.626− 0.541 log(n) + 0.0242 log2(n)] for n = 2, ..., 100

=
1

n
[−4.71− 0.512 log(n) + 0.0219 log2(n)] for n = 101, ..., 1000

Using this non parametric likelihood confidence interval, we derive a confi-
dence interval for the mean of a bounded continuous random variable by pro-
jection.

Theorem 8 [Likelihood Based Nonparametric confidence interval
for the mean of a bounded continuous random variable]
Let x(1), ...x(n) be an ordered iid sample drawn from a continuous distribution

function F(x) with range [a,b]. Define x(0) = a and x(n+1) = b Let L(x) and
H(x) represent the Owen’s confidence interval for F(x). Then a 1−α confidence
interval for E(X) is

E(X) ≤ L(x(1)) ∗ x(1) +
nX

k=2

[L(x(k))− L(x(k−1))] ∗ x(k) + [1− L(x(n))] ∗ x(n+1)

E(X) ≥ H(x(0)) ∗ x(0) +
nX

k=1

[H(x(k))−H(x(k−1))] ∗ x(k) (14)

Proof : The proof of this theorem relies on the same trick than that of the
non uniform confidence intervals we have derived. The theorem of Owen (95)
gives that

L(x(k)) ≤ F (x(k)) ≤ H(x(k)) ∀k = 1, ..., n
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Given the definition of L(x) and H(x), one can see that for x (0), L(x(0)) = 0

and H(x(0)) = 1 − e−λn and for x(n) : L(x(n)) = e−λn and H(x(n)) = 1.
As a consequence, the confidence bands of Owen are effective for all x(i). The
distribution which satisfies the first inequality in (13) with the largest mean is
the distribution with jumps L(x(1)) at x(1) ; L(x(k)) − L(x(k−1)) at x(k) for
k=2,...,n and 1− L(x(n)) at x(n+1) = b. Idem, The distribution which satisfies
the second inequality in (13) with the smallest mean is the distribution with
jumps H(x(0)) at x(0) = a ; H(x(k))−H(x(k−1)) at x(k) and 1−H(x(n)) = 0
at x(n+1)=b. This yields the inequalities (14).

For the same reason as the previously mentioned for the former inference
methods, the following corollary holds.

Corollary 5 The likelihood based confidence intervals for distribution func-
tion and for the mean of a continuous bounded random variable are conservative
for the non continuous case.

Moreover, for the same reason than the Anderson’s confidence interval and
the improved Anderson’s confidence interval, the likelihood based inference
method can also be adjusted to yield inference of better performance for non
continuous bounded random variables.

6 Application to FGT Poverty Measures
Since the last ten years, many studies have been performed on asymptotic and
bootstrap inferences for poverty and inequality measures.
Studies on asymptotic inference generally use the same theoritical basis to

derive the asymptotic law of estimations. They suppose that a ramdomly drawn
sample of n observations from the same distribution is available. Then, they
apply the central limit theorem or the Slutsky theorem to derive the asymp-
totic law and estimate confidence intervals of the statistics they consider. As
a consequence, the derived law is generally normal with a variance-covariance
structure that can be consistently estimated. This procedure has been applied
to a variety of poverty and inequality measures. One can cite among the major
contributions Bishop, Formby and Zheng (1997) [8], Rongve (1997) [37], Kak-
wani (1993) [31], Dardonni and Forcina (1999) [16], Davidson and Duclos (2000)
[17] and Zheng (2001) [40].
Many studies have also been performed on bootstrap inference for poverty

and inequality measures. Among the major contributions, one can cite Knight
(1989)[33], Beran (1988) [4], Burr (1994) [12], Hall (1992) [27], Mills and Zand-
vakili (1997)[34], Biewen (2002)[7], Cowell and Flachaire (2002)[15].
Most of these studies find evidence that (1) statistical inference is essential

even when large samples are available and (2) the use of bootstrap inference is
recommended rather than that of asymptotic one.
More recently Davidson and Flachaire (2004)[18] study the finite sample per-

formance of asymptotic and bootstrap inference for the Theil inequality indice
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and the FGT poverty measures. They show that standard bootstrap infer-
ence gives better performance than asymptotic one for poverty and inequality
measures. The authors explain this by the low convergence of the law of the
statistics to the asymptotic one. However, their results show that both meth-
ods have bad performance for inequality measures but the performance of the
standard bootstrap inference is acceptable for poverty measures.

6.1 The FGT Poverty Measures

Since Sen (1976)[38], many poverty measures have been exhibited going from
the well known headcount ratio to the so used Foster, Greer and Thorbecke
(FGT, 1984)[23] poverty measures. These measures have been established to fit
some axioms stated as a minimum regularity conditions that must verify a good
measure of poverty. Among all these measures the FGT poverty measures are,
for sure, the most popular ones due to the large variety of desirable properties
they fit, in particular their decomposability. We provide inference methods for
these measures.
Let,

• Y be the revenue of people with a continuous distribution function FY (y)
on a positive support ; yi represents the revenue of individual i

• z be the poverty line
• n be the sample size
The FGT poverty measures are defined for α > 0 by :

Pα(Y, z) =

Z z

0

(
z − y

z
)α dF (y)

Let X be the random variable

X = (
z − Y

z
)α I[0≤Y≤z]

Then, one can see that

Pα(Y, z) =

Z +∞

0

(
z − y

z
)α I[y≤z] dF (y) = E[X]

X is a bounded random variable with range [0, 1] and cumulative distribution
function

GX(x) =

⎧⎨⎩
0 if x < 0

1− FY [z(1− x1/α)] if 0 ≤ x ≤ 1
1 if x ≥ 1

Note also that X has a probability mass of GX(0) = 1− FY (z) at point 0.
As a consequence, the FGT poverty measures are the expected value of a

bounded random variable and can be computed as such. All procedures that
perform inference for a bounded random variable apply to FGT measures.
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We are interested in testing the null hypothese

H0 : Pα = P 0α against the alternative H1 : Pα 6= P 0α

The adequate asymptotic statistic for this test is the t-statistic

W =
cPα − Pα
\
V [cPα]

If an iid sample yi, i = 1, ..., n of Y is available, unbiased estimators of Pα
and its variance are given by

bPα = 1

n

nX
i=1

(
z − yi
z

)α I [yi ≤ z] and \
V ( bPα) = 1

n
[ bP2α − bP 2α]

The asymptotic normality of cPα has been proved by Kakwani (1993). Then,
the asymptotic and bootstrap inference methods we described above apply di-
rectly. The corresponding asymptotic and bootstrap confidence intervals are
respectively

cPα − z(1− δ
2 )
∗
∙
\
V [cPα]¸1/2 ≤ Pα ≤ cPα + z(1− δ

2 )
∗
∙
\
V [cPα]¸1/2

cPα −DW
(1− δ

2 )
∗
∙
\
V [cPα]¸1/2 ≤ Pα ≤ cPα +DW

( δ2 )
∗
∙
\
V [cPα]¸1/2

Using the definition of Pα in term of X, one can also apply the finite non-
parametric inference methods we have discussed above (Fishman (91), Ander-
son (1969), improved Anderson inference methods, likelihood based inference
method) to poverty measures. We use the conservative property of the confi-
dence intervals to apply them to poverty measures. Moreover,we can use the
adjustment we discussed for the special discrete variable X the poverty measures
involve. Here, the parameter p in the corollary 2 corresponds to the probability
of being rich.

6.2 Monte Carlo Simulations

We investigate the performance of the above methods with Monte Carlo ev-
idence. We use a modified version of the set up of Davidson and Flachaire
(2004)[18] that is based itself on Brachman, Stich and Trede (1996)[9]. We
simulate the revenue of the population from a mixing law :

Y =

½
z with probability 1− P0

SM(a, b, c) with probability P0

where SM(a, b, c) represents a Singh Maddala distribution with parameters
a, b and c for the cumulative distribution function spécification

F (y) = 1− 1

[1 + ayb]c

23



Following Davidson and Flachaire (2004), we set a = 100, b = 2.8 and c = 1.7
. α = 2 is used for the poverty measure Pα. Davidson and Flachaire (2004) set
the poverty line z to half the median of the distribution SM(a,b,c). In order to
keep the same logic, we use the same poverty line. For the specifications they
choose, the true value for P2 is P 02 = 0.013017. Our corresponding true value is
P 02 = P0 ∗ 0.013017.
We choose P0 = 0.1 and perfom N = 10, 000 Monte Carlo replications for

sample sizes n = 100, 200, 500, 1000.
The choice of P0 = 0.1 is done to illustrate a case where bootstrap inference

fails even for n = 1000.
For a SM(a,b,c) with the values we choose, the probability of being poor is

about 0.11. Then, in our set up, the true value of p (used in the adjusted case)
is p = (1− P0) + 0.89 ∗ P0. We use two values in our simulations. The first one
corresponds to the case where the true value is known and the second one to
the case where the proportion of rich for the Singh Maddala distribution is over
estimated and set to 0.95.

Let’s discuss some points concerning the framework we use for our simula-
tions.
We previously drew the attention of the reader to the fact that we choose

our framework in order to illustrate a case where bootstrap fails. In fact, the
performance of the other inference methods (other than bootstrap) are totally
robust to the origin of the data. In particular, the accuracy and the preci-
sion of the nonparametric approaches remain whatever the framework. So does
the improvement we realize relatively to the benchmark case on the precision
of confidence intervals with the methods we present in the rest of the paper.
Moreover, in the regular case, say the set up of Davidson and Flachaire (2004),
bootstrap inference also fails when n is less than 200. This is a problem when we
think that poverty studies often need to investigate the profile of populations’
subgroupwhere sample sizes are most of the time very small.
Another important point is that it is not necessary to deal with a so extreme

case that we choose to make bootstrap fails. In fact, the reason why bootstrap
fails to give good results is that the proportion of 0 is very high in the sample of
X. As a consequence, the results also apply when individuals whom revenue are
set to z with probability 1− P0 get revenue drawn from a distribution fonction
with range [z,+∞) whereas others have revenue drawn from any continuous
distribution allowing a positive probability of being poor (in order to have some
interesting data). The value of P0 can also be increased. For example with
our framework, when P0 is set to 0.2, the accuracy and the precision of the
bootstrap confidence interval are bad even for n greater than 500 but smaller
than 1000.

6.3 Simulations results

The results we obtain with our simulations are reported in table 2 (see appendix
1).
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Table 2 shows the results we get. We see that as proven by the literature,
asymptotic confidence interval is not reliable at all. Asymptotic method gives
the most precise confidence interval but fails to provide an acceptable level of
coverage even at n = 1000. This suggests that the degree of precision of the
confidence interval it yields is not desirable because its cost is not acceptable.
Bootstrap inference gives better accuracy than asymptotic one but yields a

level of confidence which remains far from the nominal level for sample sizes less
than 1000. Moreover, its precision is very bad with a very large width of the
confidence intervals.
In the opposite, finite sample nonparametric methods are strongly reliable.

They provide a confidence level almost equal to 100% for all n and even for the
adjusted cases. The Fishman confidence interval seems to experience problems
of accuracy for n=100 but its level of confidence remains nevertheless acceptable
in this case (90%).

Concerning the precision of the confidence intervals, the width of the Fish-
man’s confidence interval is better than the continuous (conservative) Ander-
son’s one. However, when we apply the adjustment for the discrete case, this
later becomes better for all sample sizes and in particular for small samples.
The width of the Anderson’s confidence interval is devided by almost 5 when
the true probability of being poor is used. The over estimation of p gives slightly
better precision than the true value at the cost of a negligeable lower level of
coverage.
The improved Anderson’s confidence interval gives better results. The width

of the Anderson’s confidence interval is divided at least by 3 in the continuous
conservative case. In addition, the discrete adjustment is once more precise.
We go from a confidence interval with a width almost 20 times superior to
the asymptotic one for the continuous Anderson’s confidence interval to an ad-
justed improved confidence interval which width is about 2 times superior to
the asymptotic width.This improvement is cost free, the level of coverage of the
improved confidence intervals remaining close to 100 %.
The precision of the likelihood based confidence interval is also very good.

The width of the confidence intervals are better than the width of the Kol-
mogorov based one in particular in the continuous (conservative) case. In the
discrete case, the improvment is more visible for n > 100. However, the first
improved inference method we provide seems to act better for adjusted discrete
cases. Finally, for moderate sample sizes (about 1000) the improved inference
methods we provide seem to perform equivalently.

To resume, we have provided highly reliable and precise confidence intervals
for the mean of a bounded random variable in general and for FGT poverty
measures in particular. These simulation results prove that it is essential to
have finite sample nonparametric inference methods. The bad accuracy of the
asymptotic and bootstrap inference would motivate people to use these proposed
methods rather than the former. Moreover the improved inference methods we
provide are very simple to compute with explicit solutions that doesn’t depend
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on iterative procedures. And what is most important, they are robust to the
distribution and the size of the samples. Moreover, the high level of coverage
of our confidence intervals prove their reliability which is not the case with
asymptotic inference.

7 Conclusion
Several outcomings can be issued from this paper.
First, we confirm that asymptotic inference provides the best possible infer-

ence precision within all the inference methods but is not reliable at all in finite
sample. This is completely in accordance with the literature.
Second, we prove that standard bootstrap inference fails totally, both in

accuracy and in precision, when it is performed on a variable with a high prob-
ability of being null.
These two first conclusions gives evidence for the advantage of using non-

parametric inferences which are known to be totally insensitive to sample size
or variables’ specifications.
Third, we improve the standardized and studentized Kolmogorov statistics

to get more powerful goodness of fit tests and non uniform confidence intervals
for distribution functions that better fit the tails of distributions.
Fourth, we provide finite sample nonparametric methods to perform infer-

ence for the mean of a bounded random variable. We emphasize a simple pro-
jection principle which provides such inference methods using the confidence
interval for the corresponding distribution function. Two confidence intervals
for distribution function are used : one based on an improved studentizes kol-
mogorov statistic and another based on a likelihood criterion. The approaches
we propose have been proven to provide very good performances.

To end, we show how all these inference methods apply to poverty measures.
The performance of each method has been investigated and we emphasize the
additional profit of taking into account the particular discrete specification of
the random variable we use to compute the FGT poverty measure.
Monte Carlo simulations demonstrate the necessity of using finite sample

nonparametric approaches. The asymptotic and bootstrap inference methods
are not reliable in finite sample. On the contrary, the finite sample nonpara-
metric inference we propose are robust to the framework and the sample size we
use. Confidence intervals we get have a very good coverage probability that is
always close to 100% and a good precision too. In addition, we provide explicit
expressions which make them very easy to compute.
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APPENDIX 1 : Tables and Figures
TABLE 1 : POWER AND LEVEL OF THE GOODNESS OF FIT TESTS FOR DIFFERENT ε

Table 1.0 : Critical points of the Statistics’ Distributions

n = 500 α = 0.05 N = 1, 000, 000

E psilon 0.005 0 .07 0 .1 0 .15 0 .2 0 .3 0 .4
D n _u n if 0.0604 0.0603 0.0604 0.0604 0.0604 0.0604 0.0604
E icker 4.8010 4.8004 4.7936 4.8004 4.7979 4.7965 4.7997

R eg  E icker 32.6779 2.9203 2 .5837 2.2902 2 .09E +00 1.79E +00 1.58E +00
A-D 3.3925 2.4711 2.6233 2.7256 2.0863 2.0586 8.5900

R eg  A-D 4.2185 2.6525 2 .4800 2.2515 2 .06E +00 1.78E +00 1.57E +00

E psilon 0.5 0 .75 1 10 100 1000 1000000
D n _u n if 0.0603 0.0603 0.0604 0.0604 0.0604 0.0604 0.0604
E icker 4.8019 4.7996 4.7982 4.7965 4.7901 4.7936 4.7965

R eg  E icker 1.4080 1.1114 0.9215 0.1290 1.34E -02 1 .35E -03 1.35E -06
A-D 1.9852 2.4415 1.8377 2.6262 2.0124 2.8392 1.5794

R eg  A-D 1.4014 1.1094 0.9204 0.1290 1.34E -02 1 .35E -03 1.35E -06
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Table 1.1 : n = 500 N = 10, 000 H0 : X ∼ N(0, 1) vs H1 : X ∼ N(0.1, 1.1)

E psilon 0.005 0 .07 0 .1 0.15 0 .2 0.3 0.4
P uiss 63.87 64 .07 64 .07 64.23 64 .07 63.41 63.58

N iv eau 5.1 5 .0 5 .1 5.2 4 .8 4.8 5.0
P uiss 5.08 5 .04 4 .91 4.79 5 .04 4.90 5 .07

N iv eau 5.1 5 .0 4 .8 5.0 5 .0 5.1 5.1
P uiss 0.57 52 .32 62 .63 66.45 67 .05 66.48 67.09

N iv eau 4.9 5 .0 5 .1 5.1 5 .0 5.0 4.8
P uiss 28.57 27 .75 28 .18 27.95 28 .15 28.53 28.49

N iv eau 4.8 5 .2 5 .2 5.2 5 .1 5.1 4.8
P uiss 67.66 84 .02 81 .82 80.29 78 .40 74.95 74.10

N iv eau 4.7 5 .1 5 .0 5.0 5 .0 4.8 5.0

E psilon 0.5 0 .75 1 10 100 1000 1000000
P uiss 63.57 64 .46 63 .71 63.73 64 .15 63.41 63.85

N iv eau 5.0 5 .6 4 .8 5.3 4 .8 4.9 4.7
P uiss 4.36 4 .96 4 .47 4.84 5 .08 4.87 4 .85

N iv eau 5.1 5 .1 5 .0 5.0 4 .9 5.0 4.9
P uiss 66.84 66 .72 65 .59 63.97 64 .14 63.41 63.85

N iv eau 5.3 5 .7 5 .0 5.3 4 .8 4.9 4.7
P uiss 28.51 28 .26 28 .75 28.37 29 .36 28.61 28.68

N iv eau 5.5 5 .1 5 .1 4.7 5 .4 5.2 5.1
P uiss 72.58 71 .09 68 .95 64.35 64 .16 63.41 63.85

N iv eau 5.0 5 .6 5 .0 5.3 4 .8 4.9 4.7

D n_un if

E icker

R eg  E icker

A-D

A-D

R eg  A-D

R eg  A-D

D n_un if

E icker

R eg  E icker
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Figure 1.1 : graph of table 1.1

Power of test for H0 : x~N(0,1) vs H1 : x~N(0.1,1.1)
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Table 1.2 : n = 500 N = 10, 000 H0 : X ∼ SM [100, 2.8, 1.7] vs H1 : X ∼ SM [100, 2.89, 1.7]

E p silo n 0 .0 0 5 0.0 7 0 .1 0 .1 5 0 .2 0 .3 0 .4
P u is s 6 2 .5 1 6 2 .2 7 6 1 .82 6 2 .2 3 61 .9 4 6 2.1 0 6 1 .7 3

N iv e a u 4 .7 5 .3 5 .1 5 .4 5 .1 4 .9 4 .8
P u is s 1 7 .6 7 1 8 .2 7 1 7 .71 1 7 .7 0 18 .2 0 1 8.4 6 1 7 .3 9

N iv e a u 5 .0 4 .8 4 .9 5 .2 5 .0 5 .3 4 .6
P u is s 8 .8 9 5 1 .5 8 5 7 .08 6 0 .5 1 61 .5 7 6 2.4 0 6 2 .0 4

N iv e a u 4 .9 5 .2 5 .1 5 .4 5 .3 4 .7 4 .9
P u is s 3 .9 0 4 .0 6 3 .6 8 4 .0 2 3 .7 5 3 .8 5 3 .82

N iv e a u 4 .9 5 .6 4 .9 5 .0 5 .1 4 .8 5 .2
P u is s 1 4 .2 9 5 8 .2 2 5 8 .44 5 9 .6 9 60 .1 4 6 1.2 7 6 1 .2 7

N iv e a u 4 .8 5 .6 5 .1 5 .2 5 .3 4 .6 5 .0

E p silo n 0 .5 0 .7 5 1 1 0 1 0 0 1 0 00 10 0 0 0 0 0
P u is s 6 3 .5 0 6 2 .7 5 6 1 .63 6 2 .7 1 63 .4 4 6 1.7 1 6 2 .0 1

N iv e a u 4 .9 5 .0 5 .1 4 .7 5 .4 4 .9 4 .7
P u is s 1 7 .4 0 1 7 .1 4 1 6 .99 1 7 .7 0 18 .0 0 1 8.2 1 1 7 .4 6

N iv e a u 5 .0 5 .0 4 .8 4 .9 4 .9 5 .0 4 .9
P u is s 6 2 .3 1 6 3 .2 1 6 1 .96 6 2 .7 6 63 .4 3 6 1.7 1 6 2 .0 1

N iv e a u 5 .0 5 .2 4 .9 4 .7 5 .4 4 .9 4 .7
P u is s 3 .6 0 3 .9 4 3 .8 5 3 .6 7 3 .7 8 3 .9 8 3 .95

N iv e a u 5 .3 4 .8 5 .5 5 .2 4 .9 4 .9 4 .7
P u is s 6 2 .9 8 6 2 .3 8 6 1 .54 6 2 .7 4 63 .4 3 6 1.7 1 6 2 .0 1

N iv e a u 4 .9 5 .2 4 .9 4 .7 5 .4 4 .9 4 .7

A-D

R e g  E ic k e r

R e g  A -D

D n _ u n if

E ic k er

R e g  E ic k e r

A-D

R e g  A -D

D n _ u n if

E ic k er
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Figure 1.2 : graph of table 1.2

Power of test for H0 : x~SM(100,2.8,1.7) vs H1 : x~SM(100,2.89,1.7)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

epsilon

Po
w

er
Reg A-D

Dn_unif

Eicker

A-D

Reg Eicker

34



TABLE 2 : RESULTS OF MONTE CARLO SIMULATIONS

Table 2.0 : Critical points of the Statistics’ Distributions

n 1 0 0 2 0 0 5 0 0 1 0 0 0
D n _ u n i f 0 . 1 3 4 0 2 0 . 0 9 5 1 8 0 . 0 6 0 4 1 0 . 0 4 2 7 4

D n _ P r = 0 . 8 9 0 . 0 2 9 0 0 0 . 0 1 9 0 0 0 . 0 1 1 0 0 0 . 0 0 7 2 7
D n _ P r = 0 . 9 5 0 . 0 2 5 0 0 0 . 0 1 5 0 0 0 . 0 0 7 0 0 0 . 0 0 7 0 0
R e g  E i c k e r 2 . 6 9 0 0 2 2 . 4 0 3 7 0 2 . 2 9 0 2 3 2 . 2 6 6 2 4

R e g  E _ P r = 0 . 8 9 0 . 8 3 8 2 5 1 . 0 3 7 0 9 1 . 0 3 3 7 5 0 . 9 8 1 4 0
R e g  E _ P r = 0 . 9 5 0 . 7 7 9 8 2 0 . 7 3 1 4 9 0 . 7 4 5 3 6 0 . 7 4 6 1 1

L a m d a n 0 . 0 4 9 0 0 0 . 0 2 5 0 0 0 . 0 1 0 5 0 0 . 0 0 5 4 0
L a m d a n _ P r = 0 . 8 9 4 . 7 4 E - 0 5 3 . 0 0 E - 0 3 1 . 3 8 E - 0 3 1 . 9 3 E - 0 4
L a m d a n _ P r = 0 . 9 5 1 . 9 4 E - 0 3 0 .0 0 E + 0 0 1 . 1 7 E - 0 3 8 . 8 1 E - 0 4

Table 2.1 : Level of Confidence Intervals

N b  p o p A s y m p B o o ts t r a p F is h m a n c o n t in u  P r= 0 .8 9 P r = 0 .9 5
1 0 0 4 5 .6 5 % 3 8 .9 1 % 8 9 .3 4 % 1 0 0 % 1 0 0 % 1 0 0 %
2 0 0 6 1 .9 5 % 6 2 .7 0 % 9 4 .3 2 % 1 0 0 % 1 0 0 % 1 0 0 %
5 0 0 7 7 .6 7 % 9 2 .0 7 % 9 9 .4 3 % 1 0 0 % 1 0 0 % 1 0 0 %

1 0 0 0 8 5 .9 5 % 9 6 .3 4 % 1 0 0 % 1 0 0 % 1 0 0 % 1 0 0 %

N b  p o p c o n t in u  P r= 0 .8 9 P r = 0 .9 5 c o n t in u  P r= 0 .8 9 P r = 0 .9 5 c o n t in u  P r = 0 .8 9 P r= 0 .9 5
1 0 0 1 0 0 % 9 9 .9 1 % 9 9 .7 7 % 1 0 0 % 1 0 0 % 1 0 0 % 9 9 .9 6 % 9 8 .6 8 % 9 8 .8 4 %
2 0 0 1 0 0 % 9 9 .9 4 % 9 9 .7 8 % 1 0 0 % 1 0 0 % 1 0 0 % 1 0 0 % 9 8 .9 3 % 9 8 .9 3 %
5 0 0 1 0 0 % 1 0 0 % 9 9 .5 0 % 1 0 0 % 1 0 0 % 1 0 0 % 1 0 0 % 9 9 .8 6 % 9 9 .4 3 %

1 0 0 0 1 0 0 % 1 0 0 % 9 9 .9 9 % 1 0 0 % 1 0 0 % 1 0 0 % 1 0 0 % 1 0 0 % 1 0 0 %

R e g  E ic k e r  (n o n  u n ifo rm e )

H o r a  a n d  H o r a  u n i fo r m e

D n  (u n ifo rm e ) L ik e l ih o o d  b a s e d  IC
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Table 2.2 : Confidence Intervals

Nb  pop Nb  p au v E tend ue E tend ue m a x E tend ue Eten due  m ax Eten du e Eten du e m ax
100 2 -8 .78E-04 0 .0 03 0.00 4 0.038 -1.57 E-04 11.47 4 11 .474 47 212 .320 0 0.041 0 .0 41 0 .077
200 3 -6 .50E-04 0 .0 03 0.00 4 0.023 -6.16 E-06 21.93 8 21 .938 91 596 .732 0 0.023 0 .0 23 0 .046
500 6 -1 .98E-04 0 .0 03 0.00 3 0.011 2 .4 9E -0 4 13 3.444 133.444 125 117 6.52 2 0 0.011 0 .0 11 0 .020

10 00 12 1 .51E -0 4 0 .0 02 0.00 2 0.006 4 .6 2E -0 4 0 .0 63 0.062 2 94.7 72 1 .0 0E-04 0.007 0 .0 07 0 .012

Nb  pop Nb  p au v E tend ue E tend ue m a x E tend ue E tend ue  m ax Eten du e E tend ue m a x
100 2 -1 .33E-01 0 .1 35 0.26 8 0.268 -2.78 E-02 0 .0 30 0.058 0.05 8 -2.38 E-02 0.026 0 .0 50 0 .050
200 3 -9 .40E-02 0 .0 96 0.19 0 0.190 -1.78 E-02 0 .0 20 0.038 0.03 8 -1.38 E-02 0.016 0 .0 30 0 .030
500 6 -5 .91E-02 0 .0 62 0.12 1 0.121 -9.68 E-03 0 .0 12 0.022 0.02 2 -5.68 E-03 0.008 0 .0 14 0 .014

10 00 12 -4 .14E-02 0 .0 44 0.08 5 0.085 -5.94 E-03 0 .0 09 0.015 0.01 5 -5.67 E-03 0.008 0 .0 14 0 .014

Nb  pop Nb  p au v E tend ue Eten due  m ax E tend ue Eten due  m ax Eten du e Eten du e m ax
100 2 0 0 .1 35 0.13 5 0.148 8 .7 7E -0 6 0 .0 30 0.030 0.04 3 2 .1 1E-05 0.026 0 .0 26 0 .038
200 3 0 0 .0 96 0.09 6 0.105 1 .2 5E -0 5 0 .0 20 0.020 0.02 9 3 .1 1E-05 0.016 0 .0 16 0 .025
500 6 0 0 .0 62 0.06 2 0.067 3 .0 4E -0 5 0 .0 12 0.012 0.01 7 1 .3 4E-04 0.008 0 .0 08 0 .012

10 00 12 0 0 .0 44 0.04 4 0.048 7 .6 2E -0 5 0 .0 09 0.009 0.01 1 8 .4 5E-05 0.008 0 .0 08 0 .011

IC  Ho ra  a nd  H ora co ntinu  u nifo rm e IC  H ora an d Ho raun ifo rm e  discre t Pr= 0.89 IC  H ora an d Ho raun iform e  d iscret Pr=0 .95
IC IC IC

ICF ishm an (91)
IC

IC  asym ptotiqu e IC  bo otstrap

IC  D n (uniform e) d isc re t P r= 0.95IC  Dn  (u nifo rm e) d iscret Pr=0 .89IC  D n (uniform e ) co ntinu

IC IC

IC IC IC

Nb  pop Nb pauv Etendue Etendue m ax E tendue Etendue m ax Etendue Etendue m ax
100 2 0 0.045 0.045 0.081 2.18E-06 0.015 0.015 0.035 3.11E-06 0.014 0.014 0.034

200 3 0 0.029 0.029 0.051 9.99E-07 0.013 0.013 0.028 1.10E-05 0.010 0.010 0.023

500 6 0 0.019 0.019 0.029 6.58E-06 0.009 0.009 0.017 3.66E-05 0.007 0.007 0.013

1000 12 2.6756E-10 0.014 0.014 0.020 4.02E-05 0.007 0.007 0.010 1.03E-04 0.005 0.005 0.009

Nb pop Nb pauv Etendue Etendue m ax E tendue Etendue m ax Etendue Etendue m ax
100 2 1.95E -05 0.076 0.076 0.091 9.57E-05 0.033 0.033 0.042 8.88E-05 0.035 0.035 0.044
200 3 3.59E -05 0.040 0.040 0.048 1.53E-04 0.018 0.018 0.023 1.54E-04 0.018 0.018 0.022
500 6 9.32E -05 0.018 0.018 0.022 2.00E-04 0.012 0.011 0.015 2.66E-04 0.009 0.009 0.012

1000 12 1.72E -04 0.010 0.010 0.013 2.85E-04 0.007 0.007 0.009 3.37E-04 0.006 0.006 0.008

IC  R eg E icker (non uniform e) continu

Like lihood  based IC discre t (Pr=0.89)

IC  R eg E icker (non  uniform e) discret P r=0.95
IC

IC Reg Eicker (non unifo rm e) d iscret Pr=0.89

IC
Likelihood based IC  discre t (Pr=0 .95)

IC IC

IC IC

Likelihood based IC  continu
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FIGURE 2 : F (x) is a SM(a, b, c) with a = 100, b = 2.8, c = 1.7
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APPENDIX 2 : Proof of theorem 3
with the projection principle
By definition,

E[X] =

Z b

a

x dF (x) = b−
Z b

a

F (x) dx

So, integrating the confidence interval for F(x) provide a confidence interval for
E[X], that is,

b−
Z b

a

max{Fn(x) + γ, 1}dx ≤ E[X] ≤ b−
Z b

a

max{Fn(x)− β, 0}dx (15)

Let r and s be defined as in the theorem 3.

• The left hand-side of (15) yields :

E[X] ≥ b− [
Z x(n−s)

a

Fn(x) + γ dx+ [b− x(n−s)] ∗ 1]

≥ x(n−s) − γ[x(n−s) − a]− 1
n

n−sX
k=1

(k − 1)[x(k) − x(k−1)]

≥ x(n−s) − γ[x(n−s) − a]− 1
n

n−sX
k=1

(k − 1)x(k) + 1

n

n−s−1X
k=0

kx(k)

≥ x(n−s) − γ[x(n−s) − a] +
1

n

n−s−1X
k=1

x(k) +
1

n
x(n−s) − 1

n
(n− s)x(n−s)

≥ 1

n
[
n−s−1X
k=1

x(k) + (n+ 1− (n− s))x(n−s)]− γ[x(n−s) − a]

≥ 1

n
[
n−s−1X
k=1

x(k) + (s+ 1)x(n−s)]− γ[x(n−s) − a]

This last inequality is indeed the left hand-side inequality in theorem 3.
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• The right hand-side of (15) yields :

E[X] ≤ b− 0 ∗ [x(r+1) − a]−
Z b

x(r+1)

Fn(x)− β dx

≤ b+ β[b− x(r+1)]− 1
n

n+1X
k=r+2

(k − 1)[x(k) − x(k−1)

≤ b+ β[b− x(r+1)] − 1
n

n+1X
k=r+2

(k − 1)x(k) + 1

n

nX
k=r+1

kx(k)

≤ b+ β[b− x(r+1)]− 1
n

nX
k=r+2

x(k) +
b

n
− (r + 1)x(r+1)

n
− n+ 1

n
b

≤ 1

n
[(r + 1)x(r+1) +

nX
k=r+2

x(k)] + β[b− x(r+1)]

Again, this last inequality is similar to the right hand-side one of theorem
3.
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APPENDIX 3 : Proof of Corollary 3
Remind from the last section that X = (z−Yz )α I[0≤Y≤z] is a random variable

with a probability mass of GX(0) = 1 − FY (z) at point 0 and distribution
function

GX(x) = {
0 if x < 0

1− FY [z(1− x1/α)] if 0 ≤ x ≤ 1
1 if x ≥ 1

Actually, X follows a mixing of a probability mass at 0 and a continuous distri-
bution function. Its distribution can be rewritten

GX(x) = {
0 if x < 0
1− FY (z) ≡ p if x = 0

p+
R x
0
h(u) du if x > 0

with some adequate density h1 . It follows that GX(X) is also a mixing :

GX(X) = p with probability p

∼ U(p,1] with probability 1-p

The Kolmogrov statistic corresponding to this special case is

Dn = max
0≤x≤1

| Gn(x)−G(x) |= max{|bp− p|, max
0<x≤1

| Gn(x)−G(x) |}

= max{|bp− p|, max
0<x≤1

| 1
n

nX
k=1

I[x
k
≤x] −G(x) |}

= max{|bp− p|, max
0<x≤1

| 1
n

nX
k=1

I[G(x
k
)≤G(x)] −G(x) |}

= max{|bp− p|, max
p<v≤1

| 1
n

nX
k=1

I[G(x
k
)≤v] − v |}

= max
p≤v≤1

¯̄̄̄
¯ 1n

nX
k=1

I[G[xk]≤v)] − v

¯̄̄̄
¯

1Actually, h is the density of the random variable T = ( z−Z
z
)α where Z is a truncation of

Y on [0,z]
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APPENDIX 4 : Proof of theorem 5
Suppose that we are under the hypotheses of theorem 5. Then, given cE

such that Pr[En ≤ cRE ] = 1 − α proposition 5 gives us a 1 − α confidence
interval for F(x) :

Fn(x)− cE√
n
F 1/2n (x)[1− Fn(x)]

1/2 ≤ F (x) ≤ Fn(x) +
cE√
n
F 1/2n (x)[1− Fn(x)]

1/2

(16)

• The left hand-side of (16) yields for k = 0, ..., n+ 1 :
Fn(x(k))− cE√

n
F 1/2n (x(k))[1− Fn(x(k))]

1/2 ≤ F (x(k))

or
k

n
− cE√

n
[
k

n
]1/2[1− k

n
]1/2 ≤ F (x(k)) (17)

Given that F (x(k)) ≥ 0 ∀k, this bound is effective only for k such that
g(k) ≥ 0 where g(k) represents the lower bound defined above i.e.

k

n
− cE√

n
[
k

n
]1/2[1− k

n
]1/2 ≥ 0⇔ k ≥ cE

√
n[
k

n
]1/2[1− k

n
]1/2

⇔ k2 ≥ c2En
k

n
[1− k

n
]⇔ (n+ c2E)k

2 − nc2Ek ≥ 0

⇒ (n+ c2E)k − nc2E ≥ 0⇒ k ≥ nc2E
(n+ c2E)

= k∗IE

Then, g(k) ≥ 0 for k ≥ k∗IE i.e k = kIE + 1, ..., n with kIE = [k∗IE ], the
integer part of k∗IE

The distribution which satisfies (17) with the largest mean is the distribution
with jumps of

1. g(kIE + 1) =
kIE+1
n − cE√

n

½³
kIE+1
n

´1/2 ³
1− kIE+1

n

´1/2¾
at x(kIE+1)

2. g(k)−g(k−1) = 1
n − cE√

n

n¡
k
n

¢1/2 ¡
1− k

n

¢1/2 − ¡k−1n ¢1/2 ¡
1− k−1

n

¢1/2o
at

x(k) for k = kIE + 2, ..., n

3. 1− g(n) = 1− {1− cE√
n
[
¡
n
n

¢1/2 ¡
1− n

n

¢1/2
]} = 0 at b

This yields

E(x) ≤
"
kIE + 1

n
− cE√

n

(µ
kIE + 1

n

¶1/2µ
1− kIE + 1

n

¶1/2)#
∗ x(kIE+1)

+
nX

k=kIE+2

"
1

n
− cRE√

n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)
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• The right hand-side of (16) yields for k = 0, ..., n+ 1:

F (x(k)) ≤ Fn(x(k)) +
cE√
n
F 1/2n (x(k))[1− Fn(x(k))]

1/2

or F (x(k)) ≤ k

n
+

cE√
n
[
k

n
]1/2[1− k

n
]1/2 (18)

Given that F (x(k)) ≤ 1 ∀k, this bound is effective only for k such that
h(k) ≤ 1 where h(k) represents the upper bound defined above i.e.

k

n
+

cE√
n
[
k

n
]1/2[1− k

n
]1/2 ≤ 1⇔ cE

n3/2
[k]1/2[n− k]1/2 ≤ [1− k

n
]

⇒ c2Ek[n− k] ≤ n(n2 − 2nk + k2)

⇒ (n+ c2E)k
2 − n(2n+ c2E)k + n3 ≥ 0

Let

∆S
E = n2(2n+ c2E)

2 − 4n3(n+ c2E) = n2(4n2 + 4nc2E + c4E)− 4n4 + 4n3c2E
= n2c4E

The roots of the equations (n+ c2E)k
2 − n(2n+ c2E)k + n3 = 0 are

k∗SE1 =
n2

(n+ c2E)
and k∗SE2 =

2n2 + 2nc2E
2(n+ c2E)

= n

and h(k) ≤ 1 for k ≤ k∗SE1 i.e k = 0, ..., k
S
E with kSE = [k

∗S
E1], the integer part of

k∗SE1 (Note that h(k
S
E) < 1).

The distribution which satisfies (18) with the smallest mean is the distribu-
tion with jumps of

1. h(0) = 0 at a

2. h(k) − h(k − 1) = 1
n +

cE√
n

n¡
k
n

¢1/2 ¡
1− k

n

¢1/2 − ¡k−1n ¢1/2 ¡
1− k−1

n

¢1/2o
at x(k) for k = 1, ..., kSE

3. 1− h(kSE) = 1− kSE
n − cE√

n

½³
kSE
n

´1/2 ³
1− kSE

n

´1/2¾
at x(kSE+1)

This yields

E(x) ≥
kSEX
k=1

"
1

n
+

cE√
n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)

+

"
1− kSE

n
− cE√

n

(µ
kSE
n

¶1/2µ
1− kSE

n

¶1/2
+ ε

)#
∗ x(kSE+1)
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APPENDIX 5 : Proof of theorem 6
Suppose that we are under the hypotheses of theorem 6. Then, given cRE

such that Pr[ER
n ≤ cRE ] = 1 − α proposition 6 gives us a 1 − α confidence

interval for F(x) :

Fn(x)−cRE√
n
F 1/2n (x)[1−Fn(x)]1/2−cRE√

n
ε ≤ F (x) ≤ Fn(x)+

cRE√
n
F 1/2n (x)[1−Fn(x)]1/2+cRE√

n
ε

(19)

• The left hand-side of (19) yields for k = 0, ..., n+ 1 :

Fn(x(k))− cRE√
n
F 1/2n (x(k))[1− Fn(x(k))]

1/2 − cREε√
n

≤ F (x(k))

or
k

n
− cRE√

n
[
k

n
]1/2[1− k

n
]1/2 − cREε√

n
≤ F (x(k)) (20)

Given that F (x(k)) ≥ 0 ∀k, this bound is effective only for k such that
g(k) ≥ 0 where g(k) represents the lower bound defined above i.e.

k
√
n− cREk

1/2[n− k]1/2 − cREεn ≥ 0⇔ (k
√
n− cREεn)

2 ≥ c2REk(n− k)

⇔ k2n− 2kcREεn3/2 + c2REε
2n2 ≥ c2REkn− c2REk

2

⇔ k2(n+ c2RE)− k(2cREεn
3/2 + c2REn) + c2REε

2n2 ≥ 0
Let

∆I = (2cREεn
3/2 + c2REn)

2 − 4c2REε2n2(n+ c2RE)

= 4c2REε
2n3 + 4c3REεn

5/2 + c4REn
2 − 4c2REε2n3 − 4c4REε2n2

= 4c3REεn
5/2 + c4REn

2 − 4c4REε2n2 = c3REn
2[cRE − 4cREε2 + 4εn1/2]

Then, the roots of the equations k2(n+c2RE)−k(2cREεn3/2+c2REn)+c2REε2n2 =
0 are

k∗IRE1 =
2cREεn

3/2 + c2REn−
√
∆I

2(c2RE + n)
and k∗IRE2 =

2cREεn
3/2 + c2REn+

√
∆I

2(c2RE + n)

and g(k) ≥ 0 for k ≥ k∗IRE2 i.e k = kIRE +1, ..., n with k
I
RE = [k

∗I
RE2], the integer

part of k∗IRE2
The distribution which satisfies (20) with the largest mean is the distribution

with jumps of

1. g(kIRE+1) =
kIRE+1

n − cRE√
n

½³
kIRE+1

n

´1/2 ³
1− kIRE+1

n

´1/2
+ ε

¾
at x(kIRE+1)

2. g(k) − g(k − 1) = 1
n − cRE√

n

n¡
k
n

¢1/2 ¡
1− k

n

¢1/2 − ¡k−1n ¢1/2 ¡
1− k−1

n

¢1/2o
at x(k) for k = kIRE + 2, ..., n

3. 1− g(n) = 1− {1− cRE√
n
[
¡
n
n

¢1/2 ¡
1− n

n

¢1/2
+ ε]} = cREε√

n
at b

43



This yields

E(x) ≤
"
kIRE + 1

n
− cRE√

n

(µ
kIRE + 1

n

¶1/2µ
1− kIRE + 1

n

¶1/2
+ ε

)#
∗x(kIRE+1)+

cREε√
n
∗b

+
nX

k=kIRE+2

"
1

n
− cRE√

n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)

• The right hand-side of (19) yields for k = 0, ..., n+ 1:

F (x(k)) ≤ Fn(x(k)) +
cRE√
n
F 1/2n (x(k))[1− Fn(x(k))]

1/2 +
cREε√

n

or F (x(k)) ≤ k

n
+

cRE√
n
[
k

n
]1/2[1− k

n
]1/2 +

cREε√
n

(21)

Given that F (x(k)) ≤ 1 ∀k, this bound is effective only for k such that
h(k) ≤ 1 where h(k) represents the upper bound defined above i.e.
k
√
n+ cREk

1/2[n− k]1/2 + cREεn ≤ n3/2 ⇔ n(k + cREε
√
n− n)2 ≥ c2REk(n− k)

⇔ k2n+ c2REε
2n2 + n3 + 2kcREεn

3/2 − 2kn2 − 2cREεn3/2 ≥ c2REkn− c2REk
2

⇔ k2(n+ c2RE) + kn(2cREε
√
n− 2n− c2RE) + n2(c2REε

2 − 2cREε
√
n+ n) ≥ 0

Let

∆S = n2(2cREε
√
n− 2n− c2RE)

2 − 4n2(c2REε2 − 2cREε
√
n+ n)(n+ c2RE)

= 4c2REε
2n3 + 4n4 + c4REn

2 − 8cREεn7/2 − 4c3REεn5/2 + 4c2REn3
−4c2REε2n3 − 4c4REε2n2 + 8cREεn7/2 + 8c3REεn5/2 − 4n4 − 4c2REn3

= c4REn
2 − 4c4REε2n2 + 4c3REεn5/2 = c3REn[cREn− 4cREnε2 + 4εn3/2]

Then, the roots of the equations k2(n + c2RE) + kn(2cREε
√
n − 2n − c2RE) +

n2(c2REε
2 − 2cREε

√
n+ n) = 0 are

k∗SRE1 =
c2REn+ 2n

2 − 2cREεn3/2 −
√
∆S

2(c2RE + n)
and k∗SRE2 =

c2REn+ 2n
2 − 2cREεn3/2 +

√
∆S

2(c2RE + n)

and h(k) ≤ 1 for k ≤ k∗SRE1 i.e k = 0, ..., kSRE with kSRE = [k∗SRE1], the integer
part of k∗SRE1 (Note that h(k

S
E) < 1).

The distribution which satisfies (21) with the smallest mean is the distribu-
tion with jumps of

1. h(0) = cREε√
n
at a

2. h(k) − h(k − 1) = 1
n +

cRE√
n

n¡
k
n

¢1/2 ¡
1− k

n

¢1/2 − ¡k−1n ¢1/2 ¡
1− k−1

n

¢1/2o
at x(k) for k = 1, ..., kSRE − 1
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3. 1− h(kSRE) = 1− kSRE
n − cRE√

n

½³
kSRE
n

´1/2 ³
1− kSRE

n

´1/2
+ ε

¾
at x(kSRE)

This yields

E(x) ≥ cREε√
n
∗a+

"
1− kSRE

n
− cRE√

n

(µ
kSRE
n

¶1/2µ
1− kSRE

n

¶1/2
+ ε

)#
∗x(kSRE+1)

+

kSREX
k=1

"
1

n
+

cRE√
n

(µ
k

n

¶1/2µ
1− k

n

¶1/2
−
µ
k − 1
n

¶1/2µ
1− k − 1

n

¶1/2)#
∗x(k)
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