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1. Introduction

Consider two probability distributions, A and B, characterised by cumulative distri-
bution functions (CDFs) FA and FB . In practical applications, these distributions
might be distributions of income, before or after tax, wealth, or of returns on financial
assets. Distribution B is said to dominate distribution A stochastically at first order
if, for all z in the union of the supports of the two distributions, FA(z) ≥ FB(z). If B
dominates A, then it is well known that expected utility and social welfare are greater
in B than in A for all utility and social welfare functions that are symmetric and mono-
tonically increasing in returns or in incomes (and lower for all poverty indices that are
symmetric and monotonically decreasing in incomes). These are powerful orderings of
the two distributions, and it is therefore not surprising that a considerable empirical
literature has sought to test for such dominance in the last decades.

Until now, the most common way to test whether there is stochastic dominance, on the
basis of samples drawn from the two populations A and B, is to posit a null hypothesis
of dominance, and then to study test statistics that may or may not lead to rejection
of this hypothesis. Non-rejection of dominance unfortunately does not enable one to
accept dominance, the usual outcome of interest. It may thus be preferable, from a
logical point of view, to posit a null of non-dominance, since, if we succeed in rejecting
this null, the only other possibility is dominance, and we may therefore draw the
conclusion of dominance.

We adopt this latter standpoint in this paper. We find that it leads to testing proce-
dures that are actually simpler to implement than conventional procedures in which
the null is dominance. The simplest procedure for testing nondominance was proposed
originally by Kaur, Prakasa Rao, and Singh (1994) (henceforth KPS) for continuous
distributions A and B, and a similar test was proposed in an unpublished paper by
Howes (1993) for discrete distributions. In this paper, we develop an alternative pro-
cedure, based on an empirical likelihood ratio statistic. It turns out that this statistic
is always numerically very similar to the KPS statistic in all the cases we consider.
However, the empirical likelihood approach produces as a by-product a set of proba-
bilities that can be interpreted as estimates of the population probabilities under the
assumption of nondominance.

These probabilities make it possible to set up a bootstrap data-generating process
(DGP) which lies on the frontier of the null hypothesis of nondominance. We show that,
on this frontier, both the KPS and the empirical likelihood statistics are asymptotically
pivotal, by which we mean that they have the same asymptotic distribution for all
configurations of the population distributions that lie on the frontier. A major finding
of this paper is that bootstrap tests that make use of the bootstrap DGP we define
yield much more satisfactory inference than tests based on the asymptotic distributions
of the statistics.

The paper also shows that it is not possible with continuous distributions to reject
nondominance in favour of dominance over the entire supports of the distributions.
Accepting dominance is empirically sensible only over restricted ranges of incomes and
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returns. This necessitates a recasting of the usual theoretical links between stochastic
dominance relationships and orderings in terms of poverty, social welfare and expected
utility. It also highlights better why a non-rejection of the usual null hypothesis of
unrestricted dominance cannot be interpreted as an acceptance of dominance, since
unrestricted dominance can never be inferred from continuous data.

In Section 2, we investigate the use of empirical likelihood methods for estimation of
distributions under the constraint that they lie on the frontier of nondominance, and
develop the empirical likelihood ratio statistic. The statistic is a minimum over all
the points of the realised samples of an empirical likelihood ratio that can be defined
for all points z in the support of the two distributions. In Section 3 we recall the
KPS statistic, which is defined as a minimum over z of a t statistic, and show that
the two statistics are locally equivalent for all z at which FA(z) = FB(z). Section
4 shows why it turns out to be impossible to reject the null of nondominance when
the population distributions are continuous in their tails. Some connections between
this statistical fact and ethical considerations are explored in Section 5, and the con-
cept of restricted stochastic dominance is introduced. In Section 6, we discuss how to
test restricted stochastic dominance, and then, in Section 7 we develop procedures for
testing the null of nondominance, in which we are obliged to censor the distributions,
not necessarily everywhere, but at least in the tails. In that section, we also show
that, for configurations of nondominance that are not on the frontier, the rejection
probabilities of tests based on either of our two statistics are no greater than they are
for configurations on the frontier. This allows us to restrict attention to the frontier,
knowing that, if we can control Type I error there by choice of an appropriate signif-
icance level, then the probabilty of Type I error in the interior of the null hypothesis
is no greater than that on the frontier. We are then able to show that the statistics
are asymptotically pivotal on the frontier. Section 8 presents the results of a set of
Monte Carlo experiments in which we investigate the rejection probabilities of both
asymptotic and bootstrap tests, under the null and under some alternative setups in
which there actually is dominance. We find that bootstrapping leads to very consider-
able gains in the reliability of inference. Conclusions and some related discussion are
presented in Section 9.

2. Stochastic Dominance and Empirical Likelihood

Consider two distributions A and B, characterised by the cumulative distribution
functions (CDFs) FA and FB . Distribution B stochastically dominates A at first order
if, for all x in the union U of the supports of the two distributions, FA(x) ≥ FB(x). In
much theoretical writing, this definition also includes the condition that there should
exist at least one x for which FA(x) > FB(x) strictly. Since in this paper we are
concerned with statistical issues, we ignore this distinction between weak and strong
dominance since no statistical test can possibly distinguish between them.

Suppose now that we have two samples, one each drawn from the distributions A
and B. We assume for simplicity that the two samples are independent. Let NA
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and NB denote the sizes of the samples drawn from distributions A and B respectively.
Let Y A and Y B denote respectively the sets of (distinct) realisations in samples A
and B, and let Y be the union of Y A and Y B . If, for K = A,B, yKt is a point in Y K ,
let the positive integer nKt be the number of realisations in sample K equal to yKt .
This setup is general enough for us to be able to handle continuous distributions, for
which all the nKt = 1 with probability 1, and discrete distributions, for which this is
not the case. In particular, discrete distributions may arise from a discretisation of
continuous distributions. The empirical distribution functions (EDFs) of the samples
can then be defined as follows. For any z ∈ U , we have

F̂K(z) =
1
NK

∑

yKt ≤z
nKt .

If it is the case that F̂A(y) ≥ F̂B(y) for all y ∈ Y , we say that we have first-order
stochastic dominance of A by B in the sample.

In order to conclude that B dominates A with a given degree of confidence, we require
that we can reject the null hypothesis of nondominance of A by B with that degree
of confidence. Such a rejection may be given by a variety of tests. In this section
we develop an empirical likelihood ratio statistic on which a test of the null of non-
dominance can be based. As should become clear, it is relatively straightforward to
generalise the approach to second and higher orders of dominance, although solutions
such as those obtained analytically here would then need to be obtained numerically.

For a given sample, the “parameters” of the empirical likelihood are the probabilities
associated with each point in the sample. The empirical loglikelihood function (ELF)
is then the sum of the logarithms of these probabilities. If as above we denote by nt
the multiplicity of a realisation yt, the ELF is

∑
yt∈Y nt log pt, where Y is the set of

all realisations, and the pt are the “parameters”. If there are no constraints, the ELF
is maximised by solving the problem

max
pt

∑

yt∈Y
nt log pt subject to

∑

yt∈Y
pt = 1.

It is easy to see that the solution to this problem is pt = nt/N for all t, N being the
sample size, and that the maximised ELF is −N logN +

∑
t nt log nt, an expression

which has a well-known entropy interpretation.

With two samples, A and B, using the notation given above, we see that the prob-
abilities that solve the unconstrained maximisation problem are pKt = nKt /NK for
K = A,B, and that the maximised ELF is

−NA logNA −NB logNB +
∑

yAt ∈Y A
nAt lognAt +

∑

yBt ∈Y B
nBt lognBt . (1)

Notice that, in the continuous case, and in general whenever nKt = 1, the term
nKt log nKt vanishes.
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The null hypothesis we wish to consider is that B does not dominate A, that is, that
there exists at least one z in the interior of U such that FA(z) ≤ FB(z). We need z to
be in the interior of U because, at the lower and upper limits of U , which is the union
of the supports of the two distributions, we always have FA(z) = FB(z), since both are
either 0 or 1. In the samples, we exclude the smallest and greatest points in the set Y
of realisations, for the same reason. We write Y ◦ for the set Y without its two extreme
points. If there is a y ∈ Y ◦ such that F̂A(y) ≤ F̂B(y), there is nondominance in the
samples, and, in such cases, we plainly do not wish to reject the null of nondominance.
This is clear in likelihood terms, since the unconstrained probability estimates satisfy
the constraints of the null hypothesis, and so are also the constrained estimates.

If there is dominance in the samples, then the constrained estimates must be different
from the unconstrained ones, and the empirical loglikelihood maximised under the
constraints of the null is smaller than the unconstrained maximum value. In order to
satisfy the null, we need in general only one z in the interior of U such that FA(z) =
FB(z). Thus, in order to maximise the ELF under the constraint of the null, we begin
by computing the maximum where, for a given z ∈ Y ◦, we impose the condition that
FA(z) = FB(z). We then choose for the constrained maximum that value of z which
gives the greatest value of the constrained ELF.

For given z, the constraint we wish to impose can be written as
∑

yAt ∈Y A
pAt I(yAt ≤ z) =

∑

yBs ∈Y B
pBs I(yBs ≤ z), (2)

where the I(·) are indicator functions, equal to 1 if the condition is true, and to 0 if not.
If we denote by FK(pK ; ·) the cumulative distribution function with points of support
the yKt and corresponding probabilities the pKt , then it can be seen that condition (2)
imposes the requirement that FA(pA, z) = FB(pB , z).

The maximisation problem can be stated as follows:

max
pAt ,p

B
s

∑

yAt ∈Y A
nAt log pAt +

∑

yBs ∈Y B
nBs log pBs

subject to
∑

yAt ∈Y A
pAt = 1,

∑

yBs ∈Y B
pBs = 1,

∑

yAt ∈Y A
pAt I(yAt ≤ z) =

∑

Y Bs ∈Y B
pBs I(yBs ≤ z).

The Lagrangian for this constrained maximisation of the ELF is

∑
t

nAt log pAt +
∑
s

nBs log pBs + λA

(
1−

∑
t

pAt

)
+ λB

(
1−

∑
s

pBs

)

−µ
(∑

t

pAt I(yAt ≤ z)−
∑
s

pBs I(yBs ≤ z)

)
,

with obvious notation for sums over all points in Y A and Y B , and where we define
Lagrange multipliers λA, λB , and µ for the three constraints.
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The first-order conditions are the constraints themselves and the relations

pAt =
nAt

λA + µI(yAt ≤ z)
and pBs =

nBs
λB − µI(yBs ≤ z)

. (3)

Since
∑
t p
A
t = 1, we find that

λA =
∑
t

λAn
A
t

λA + µIt(z)
=
∑
t

nAt
λA + µIt(z)
λA + µIt(z)

− µ
∑
t

nAt It(z)
λA + µIt(z)

= NA − µ

λA + µ

∑
t

nAt It(z) = NA − µ

λA + µ
NA(z), (4)

where It(z) ≡ I(yAt ≤ z) and NA(z) =
∑
t n

A
t It(z) is the number of points in sample A

less than or equal to z. Similarly,

λB = NB +
µ

λB − µNB(z) (5)

with NB(z) =
∑
s n

B
s Is(z). With the relations (3), the constraint (2) becomes

∑
t

It(z)
λA + µ

=
∑
s

Is(z)
λB − µ, that is,

NA(z)
λA + µ

=
NB(z)
λB − µ. (6)

Thus, adding (4) and (5), we see that

λA + λB = NA +NB = N, (7)

where N ≡ NA +NB .

If we make the definition ν ≡ λA + µ, then, from (7), λB − µ = N − λA − µ = N − ν.
Thus (6) becomes

NA(z)
ν

=
NB(z)
N − ν . (8)

Solving for ν, we obtain

ν =
NNA(z)

NA(z) +NB(z)
. (9)

From (4), we see that

λA = NA −NA(z) +
λANA(z)
λA + µ

so that 1 =
NA −NA(z)

λA
+
NA(z)
λA + µ

. (10)

Similarly, from (5),

1 =
NB −NB(z)

λB
+
NB(z)
λB − µ. (11)
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Write λ ≡ λA, and define MK(z) = NK−NK(z). Then (10) and (11) combine with (6)
to give

MA(z)
λ

=
MB(z)
N − λ . (12)

Solving for λ, we see that

λ =
NMA(z)

MA(z) +MB(z)
. (13)

The probabilities (3) can now be written in terms of the data alone using (9) and (13).
We find that

pAt =
nAt It(z)

ν
+
nAt (1− It(z))

λ
and pBs =

nBs Is(z)
N − ν +

nBs (1− Is(z))
N − λ . (14)

We may use these in order to express the value of the ELF maximised under constraint
as

∑
t

nAt lognAt +
∑
s

nBs log nBs

−NA(z) log ν −MA(z) log λ−NB(z) log(N − ν)−MB(z) log(N − λ). (15)

Twice the difference between the unconstrained maximum (1), which can be written
as ∑

t

nAt log nAt +
∑
s

nBs log nBs −NA logNA −NB logNB ,

and the constrained maximum (15) is an empirical likelihood ratio statistic, which of
course does not have the conventional χ2 distribution under the null hypothesis that
the constraint (2) is true in the populations.

Using (9) and (13) for ν and λ, the statistic can be seen to satisfy the relation

1−
2

LR(z) = N logN −NA logNA −NB logNB +NA(z) logNA(z) +NB(z) logNB(z)

+MA(z) logMA(z) +MB(z) logMB(z)− (NA(z) +NB(z)
)

log
(
NA(z) +NB(z)

)

−(MA(z) +MB(z)
)

log
(
MA(z) +MB(z)

)
. (16)

We will see later how to use the statistic in order to test the hypothesis of nondomi-
nance.
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3. The Minimum t Statistic

In Kaur, Prakasa Rao, and Singh (1994), a test is proposed based on the minimum of
the t statistic for the hypothesis that FA(z)−FB(z) = 0, computed for each value of z
in some closed interval contained in the interior of U. The minimum value is used as the
test statistic for the null of nondominance against the alternative of dominance. The
test can be interpreted as an intersection-union test. It is shown that the probability
of rejection of the null when it is true is asymptotically bounded by the nominal level
of a test based on the standard normal distribution. Howes (1993) proposed a very
similar intersection-union test, except that the t statistics are calculated only for the
predetermined grid of points.

In this section, we show that the empirical likelihood ratio statistic (16) developed in
the previous section, where the constraint is that FA(z) = FB(z) for some z in the
interior of U, is locally equivalent to the square of the t statistic with that constraint
as its null, under the assumption that indeed FA(z) = FB(z).

Since we have assumed that the two samples are independent, the variance of F̂A(z)−
F̂B(z) is just the sum of the variances of the two terms. The variance of F̂K(z),
K = A,B, is FK(z)

(
1−FK(z)

)
/NK , where NK is as usual the size of the sample from

population K, and this variance can be estimated by replacing FK(z) by F̂K(z). Thus
the square of the t statistic is

t2(z) =
NANB

(
F̂A(z)− F̂B(z)

)2

NBF̂A(z)
(
1− F̂A(z)

)
+NAF̂B(z)

(
1− F̂B(z)

) . (17)

Suppose that FA(z) = FB(z) and denote their common value by F (z). Also define
∆(z) ≡ F̂A(z) − F̂B(z). For the purposes of asymptotic theory, we consider the limit
in which, as N → ∞, NA/N tends to a constant r, 0 < r < 1. It follows that
F̂K(z) = F (z) +Op(N−1/2) and that ∆(z) = Op(N−1/2) as N →∞.

The statistic (17) can therefore be expressed as the sum of its leading-order asymptotic
term and a term that tends to 0 as N →∞:

t2(z) =
r(1− r)

F (z)(1− F (z))
plim
N→∞

N∆2(z) +Op(N−1/2). (18)

It can now be shown that the statistic LR(z) given by (16) is also equal to the right-
hand side of (18) under the same assumptions as those that led to (18). The algebra
is rather messy, and so we state the result as a theorem.

Theorem 1

As the size N of the combined sample tends to infinity in such a way that
NA/N → r, 0 < r < 1, the statistic LR(z) defined by (16) tends to the
right-hand side of (18) for any point z in the interior of U , the union of the
supports of populations A and B, such that FA(z) = FB(z).
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Proof: In Appendix.

Remarks:

It is important to note that, for the result of the above theorem and for (18) to hold, the
point z must be in the interior of U . As we will see in the next section, the behaviour
of the statistics in the tails of the distributions is not adequately represented by the
asymptotic analysis of this section.

It is clear that both of the two statistics are invariant under monotonically increasing
transformations of the measurement units, in the sense that if an income z is trans-
formed into an income z′ in a new system of measurement, then t2(z) in the old system
is equal to t(z′) in the new, and similarly for LR(z) .

Corollary

Under local alternatives to the null hypothesis that FA(z) = FB(z), where
FA(z) − FB(z) is of order N−1/2 as N → ∞, the local equivalence of t2(z)
and LR(z) continues to hold.

Proof:

Let FA(z) = F (z) and FB(z) = F (z) − N−1/2δ(z), where δ(z) is independent of N .
Then ∆(z) is still of order N−1/2 and the limiting expression on the right-hand side
of (18) is unchanged. The common asymptotic distribution of the two statistics now
has a positive noncentrality parameter.

4. The Tails of the Distribution

Although the null of nondominance has the attractive property that, if it is rejected,
all that is left is dominance, this property comes with a caveat. The caveat is that
it is impossible to infer dominance over the full support of the distributions if these
distributions are continuous in the tails. This is also a warning that non-rejection of
the literature’s earlier null hypotheses of dominance cannot be interpreted as implying
dominance. Moreover and as we shall see in this section, compared to these tests
of dominance, the tests of nondominance that we consider have the advantage of
delimiting the range over which restricted dominance can be inferred.

The nondominance of distribution A by B can be expressed by the relation

max
z∈U

FB(z)− FA(z) ≥ 0, (19)

where U is as usual the joint support of the two distributions. But if z− denotes the
lower limit of U , we must have FB(z−)− FA(z−) = 0, whether or not the null is true.
Thus the maximum over the whole of U is never less than 0. Rejecting (19) by a
statistical test is therefore impossible. The maximum may well be significantly greater
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than 0, but it can never be significantly less, as would be required for a rejection of
the null.

Of course, an actual test is carried out, not over all of U , but only at the elements
of the set Y of points observed in one or other sample. Suppose that A is dominated
by B in the sample. Then the smallest element of Y is the smallest observation,
yA1 , in the sample drawn from A. The squared t statistic for the hypothesis that
FA(yA1 )− FB(yA1 ) = 0 is then

t21 ≡
NANB(F̂ 1

A − F̂ 1
B)2

NBF̂ 1
A(1− F̂ 1

A) +NAF̂ 1
B(1− F̂ 1

B)
,

where F̂ 1
K = F̂K(yA1 ), K = A,B; recall (17). Now F̂ 1

B = 0 and F̂ 1
A = 1/NA, so that

t21 =
NANB/N

2
A

(NB/NA)(1− 1/NA)
=

NA
NA − 1

.

The t statistic itself is thus approximately equal to 1 + 1/(2NA). Since the minimum
over Y of the t statistics is no greater than t1, and since 1 + 1/(2NA) is nowhere near
the critical value of the standard normal distribution for any conventional significance
level, it follows that rejection of the null of nondominance is impossible. A similar,
more complicated, calculation can be performed for the test based on the empirical
likelihood ratio, with the same conclusion.

If the data are discrete, discretised or censored in the tails, then it is no longer impos-
sible to reject the null if there is enough probability mass in the atoms at either end
or over the censored areas of the distribution. If the distributions are continuous but
are discretised or censored, then it becomes steadily more difficult to reject the null as
the discretisation becomes finer, and in the limit once more impossible. The difficulty
is clearly that, in the tails of continuous distributions, the amount of information con-
veyed by the sample tends to zero, and so it becomes impossible to discriminate among
different hypotheses about what is going on there. Focussing on restricted stochastic
dominance is then the only empirically sensible avenue.

5. Restricted stochastic dominance and distributional rankings

Interestingly, there does exist in welfare economics and in finance an empirical tradition
of considering restricted dominance. One reason for this is the suspicion formalised
below that testing for unrestricted dominance is too statistically demanding since it
forces comparisons of dominance curves over areas that effectively make use of too
little information. A second reason is the feeling that unrestricted dominance does
not impose sufficient limits on the ranges over which certain ethical principles must
be obeyed.

It is often argued for instance that the precise value of the living standards of those that
are abjectly deprived should not be of concern to empirical researchers: the number of
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such abjectly deprived people should be sufficient information for welfare analysts. It
does not matter for social evaluation purposes what the exact value of one’s income is
when it is clearly too low. In other words, the distribution of living standards under
some low threshold should not matter: everyone under that threshold should certainly
be deemed to be in very difficult circumstances. Such views militate in favour of the
use of restricted poverty indices, indices that give intuitively equal ethical weight to all
those who are below a survival poverty line. The same views also suggest an analogous
concept of restricted social welfare.

To see this more precisely, consider the case in which we are interested in whether
there is more poverty in a distribution A than in a distribution B. To establish this,
consider for expositional simplicity the case of additive poverty indices, denoted as
PA(z) for a distribution A:

PA(z) =
∫
π(y; z)dFA(y) (20)

where z is a poverty line, y is income, FA(s) is the cumulative distribution function for
distribution A, and π(y; z) ≥ 0 is the poverty contribution to total poverty of someone
with income y, with π(y; z) = 0 whenever y > z. This definition is general enough to
encompass many of the poverty indices that are used in the empirical literature. Also
assume that π(y; z) is differentiable in y between 0 and z, let its first-order derivative
with respect to y be given by π1(y; z), and let Z = [z−, z+], with z− and z+ being
respectively some lower and upper limits to the range of possible poverty lines. Then
denote by Π1(Z) the class of “first-order” poverty indices P (z) defined in terms of a
function π(y; z) that satisfies the condition

π1(y; z)
{≤ 0 if y ∈ Z,

= 0 otherwise; for all z ∈ Z. (21)

We are interested in checking whether ∆P (z) ≡ PA(z) − PB(z) ≥ 0 for all such
poverty indices. This can be done using the following statement of first-order poverty
dominance:
(First-order poverty dominance)

∆P (z) > 0 for all P (z) ∈ Π1(Z) iff ∆F (y) > 0 for all y ∈ Z, (22)

with ∆F (y) ≡ FA(y)−FB(y). Note that (22) is reminiscent of the restricted headcount
ordering of Atkinson (1987). Unlike Atkinson’s result, however, the ordering in (22) is
valid for an entire class Π1(Z) of indices. Traditional unrestricted poverty dominance
is obtained with Z = [0, z+].

The indices that are members of Π1(Z) are insensitive to changes in incomes when
these take place outside of Z: they thus behave like the headcount index outside Z.
This avoids being concerned with the precise living standards of the most deprived –
for some, a possibly controversial ethical procedure, but unavoidable from a statistical
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and empirical point of view. To illustrate this, let the poverty gap at y be defined as
g(y; z) = max(z − y, 0). For a distribution A, the popular FGT indices are then given
(in their un-normalised form) by:

PA(z;α) =
∫
g(y; z)αdFA(y)

for α ≥ 0. One example of a headcount-like restricted index that is ordered by (22) is
then given by:

P (z) =




F (z−) when z ∈ [0, z−],
F (z) when z ∈ [z−, z+],
F (z+) when z ≥ z+.

(23)

The formulation in (23) can be justified by a view that a poverty line cannot sensibly
lie below z−: anyone with z− or less should necessarily be considered as being in
equally abject deprivation. Another example of a poverty index that is ordered by
(22) is:

P (z) =

{
zF (z−) when z < z−;

zF (z−) +
∫ F (z+)

F (z−)
g(y; z)dF (y) when z ≥ z−.

(24)

P (z) in (24) is the same as the traditional average poverty gap when all incomes below
z− are lowered to 0, again presumably because everyone with z− or less is deemed to
be in abject deprivation. When z ≥ z−, the index in (24) then reacts similarly to
the poverty headcount for incomes below z−, since changing (marginally) the value of
these incomes does not change the index. For higher incomes (up to z+), (24) behaves
as the traditional average poverty gap.

A setup for restricted social welfare dominance can proceed analogously, e.g. by using
utilitarian functions defined as

W =
∫
u(y)dF (y),

and by allowing u(y) to be strictly monotonically increasing only over some restricted
range of income Z. Verifying whether ∆F (y) > 0 for all y ∈ Z is then the test for
restricted first-order welfare dominance. Fixing Z = [0,∞[ yields traditional first-order
welfare dominance.

6. Testing restricted dominance

A natural way to proceed, in cases in which there is dominance in the sample, is then
to seek an interval [ẑ−, ẑ+] over which one can reject the hypothesis

max
z∈[ẑ−,ẑ+]

FB(z)− FA(z) ≥ 0. (25)

For simplicity, we concentrate in what follows on the lower bound ẑ−.
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As the notation indicates, ẑ− is random, being estimated from the sample. In fact, it
is useful to conceive of ẑ− in much the same way as the limit of a confidence interval.
We consider a nested set of null hypotheses, parametrised by z−, of the form

max
z∈[z−,z+]

FB(z)− FA(z) ≥ 0, (26)

where the upper limit z+ is fixed in such a way that the maximum of FB(z)−FA(z) is
comfortably greater than FB(z+)− FA(z+). As z− increases, the hypothesis becomes
progressively more constrained, and therefore easier to reject. For some prespecified
nominal level α, one then defines ẑ− as the smallest value of z− for which the hypoth-
esis (26) can be rejected at level α by the chosen test procedure, which could be based
either on the minimum t statistic or the minimised empirical likelihood ratio. It is
possible that ẑ− = z+, in which case none of the nested set of null hypotheses can be
rejected at level α. With this definition, ẑ− is analogous to the upper limit β+ of a
confidence interval for some parameter β. Just as ẑ− is the smallest value of z− for
which (26) can be rejected, so β+ is the smallest value of β0 for which the hypothesis
β = β0 can be rejected at (nominal) level α, where 1−α is the desired confidence level
for the interval.

The analogy can be pushed a little further. The length of a confidence interval is
related to the power of the test on which the confidence interval is based. Similarly,
ẑ− is related to the power of the test of nondominance. The closer is ẑ− to the
bottom of the joint support of the distributions, the more powerful is our rejection of
nondominance. Thus a study of the statistical properties of ẑ− is akin to a study of
the power of a conventional statistical test.

7. Testing the Hypothesis of Nondominance

We have at our disposal two test statistics to test the null hypothesis that distribu-
tion B does not dominate distribution A, the two being locally equivalent in some
circumstances. In what follows, we assume that, if the distributions are continuous,
they are discretised in the tails, so as to allow for the possibility that the null hypoth-
esis may be rejected. Empirical distribution functions (EDFs) are computed for the
two samples, after discretisation if necessary, and evaluated at all of the points yAt and
yBs of the samples. It is convenient to suppose that both samples have been sorted in
increasing order, so that yAt ≤ yAt′ for t < t′. The EDF for sample A, which we denote
by F̂A(·), is of course constant on each interval of the form [yAt , y

A
t+1[, and a similar

result holds for the EDF of sample B, denoted F̂B(·).
Recall that we denote by Y the set of all the yAt , t = 1, . . . , NA, and the yBs ,
s = 1, . . . , NB . If F̂B(y) < F̂A(y) for all y ∈ Y except for the largest value of yBs ,
then we say that B dominates A in the sample. The point yBNB is excluded from Y
because, with dominance in the sample, it is the largest value observed in the pooled
sample, and so F̂A(yBNB ) = F̂B(yBNB ) = 1. On the other hand, we do not exclude the
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smallest value yA1 , since F̂A(yA1 ) = nA1 /NA while F̂B(yA1 ) = 0. Obviously, it is only
when there is dominance in the sample that there is any possible reason to reject the
null of nondominance.

When there is dominance in the sample, let us redefine the set Y ◦ to be Y without
the upper end-point Y BNB only. Then the minimum t statistic of which the square
is given by (17) can be found by minimising t(z) over z ∈ Y ◦. There is no loss of
generality in restricting the search for the maximising z to the elements of Y ◦, since
the quantities NK(z) and MK(z) on which (15) depends are constant on the intervals
between elements of Y ◦ that are adjacent when the elements are sorted. Thus the
element ẑ ∈ Y ◦ which maximises (15) can be found by a simple search over the
elements of Y ◦.

Since the EDFs are the distributions defined by the probabilities that solve the prob-
lem of the unconstrained maximisation of the empirical loglikelihood function, they
define the unconstrained maximum of that function. For the empirical likelihood test
statistic, we also require the maximum of the ELF constrained by the requirement of
nondominance. This constrained maximum is given by the ELF (15) for the value z̃
that maximises (15). Again, z̃ can be found by search over the elements of Y ◦.

The constrained empirical likelihood estimates of the CDFs of the two distributions
can be written as

F̃K(z) =
∑

yKt ≤z
pKt n

K
t ,

where the probabilities pKt are given by (14) with z = z̃. Normally, z̃ is the only
point in Y ◦ for which F̃A(z) and F̃B(z) are equal. Certainly, there can be no z for
which F̃A(z) < F̃B(z) with strict inequality, since, if there were, the value of ELF could
be increased by imposing F̃A(z) = F̃B(z), so that we would have ELF(z) > ELF(z̃),
contrary to our assumption. Thus the distributions F̃A and F̃B are on the frontier of
the null hypothesis of nondominance, and they represent those distributions contained
in the null hypothesis that are closest to the unrestricted EDFs, for which there is
dominance, by the criterion of the empirical likelihood.

For the remainder of our discussion, we restrict the null hypothesis to the frontier
of nondominance, that is, to distributions such that FA(z0) = FB(z0) for exactly one
point z0 in the interior of the joint support U , and FA(z) > FB(z) with strict inequality
for all z 6= z0 in the interior of U . These distributions constitute the least favourable
case of the hypothesis of nondominance in the sense that, with either the minimum
t statistic or the minimum EL statistic, the probability of rejection of the null is no
smaller on the frontier than with any other configuration of nondominance. This result
follows from the following theorem.

Theorem 2

Suppose that the distribution FB is changed so that the new distribution
weakly stochastically dominates the old at first order. Then, for any z in
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the interior of the joint support U , the new distribution of the statistic t(z)
of which the square is given by (17) and the sign by that of F̂A(z) − F̂B(z)
weakly stochastically dominates its old distribution at first order. The same
is true for the square root of the statistic LR(z) given by (16) signed in the
same way. If FA is changed so that the old distribution weakly stochastically
dominates the new at first order, the same conclusions hold.

Proof: In Appendix.

Remarks:

The changes in the statement of the theorem all tend to move the distributions in the
direction of greater dominance of A by B. Thus we expect that they lead to increased
probabilities of rejection of the null of nondominance. If, as the theorem states, the
new distributions of the test statistics dominate the old, that means that their right-
hand tails contain more probability mass, and so they indeed lead to higher rejection
probabilities.

We are now ready to state the most useful consequence of restricting the null hypothesis
to the frontier of nondominance.

Theorem 3

The minima over z of both the signed asymptotic t statistic t(z) and the
signed empirical likelihood ratio statistic LR1/2(z) are asymptotically pivotal
for the null hypothesis that the distributions A and B lie on the frontier of
nondominance of A by B, that is, there exists exactly one z0 in the interior
of the joint support U of the two distributions for which FA(z0) = FB(z0),
while FA(z) > FB(z) strictly for all z 6= z0 in the interior of U .

Proof: In Appendix.

Remarks:

Theorem 3 shows that we have at our disposal two test statistics suitable for testing
the null hypothesis that distribution B does not dominate distribution A stochastically
at first order, namely the minima of t(z) and LR1/2(z). For configurations that lie
on the frontier of this hypothesis, as defined above, the asymptotic distribution of
both statistics is N(0, 1). By Theorem 2, use of the quantiles of this distribution as
critical values for the test leads to an asymptotically conservative test when there is
nondominance inside the frontier.

It is clear from the remark following the proof of Theorem 1 that both statistics are
invariant under monotonic transformations of the measuring units of income.

The fact that the statistics are asymptotically pivotal means that we can use the
bootstrap to perform tests that should benefit from asymptotic refinements in finite
samples; see Beran (1988). We study this possibility by means of simulation experi-
ments in the next section.
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8. Simulation Experiments

There are various things that we wish to vary in the simulation experiments discussed
in this section. First is sample size. Second is the extent to which observations are dis-
cretised in the tails of the distribution. Third is the way in which the two populations
are configured. In those experiments in which we study the rejection probability of var-
ious tests under the null, we wish most of the time to have population A dominated by
population B except at one point, where the CDFs of the two distributions are equal,
When we wish to investigate the power of the tests, we allow B to dominate A to a
greater or lesser extent.

Stochastic dominance to first order is invariant under increasing transformations of
the variable z that is the argument of the CDFs FA and FB . It is therefore without
loss of generality that we define our distributions on the [0, 1] interval. We always let
population A be uniformly distributed on this interval: FA(z) = z for z ∈ [0, 1]. For
population B, the interval is split up into eight equal segments, with the CDF being
linear on each segment. In the base configuration, the cumulative probabilities at the
upper limit of each segment are 0.03, 0.13, 0.20, 0.50, 0.57, 0.67, 0.70, and 1.00. This is
contrasted with the evenly increasing cumulative probabilities for A, which are 0.125,
0.25, 0.375, 0.50, 0.625, 0.75, 0.875, and 1.00. Clearly B dominates A everywhere
except for z = 0.5, where FA(0.5) = FB(0.5) = 0.5. This base configuration is thus
on the frontier of the null hypothesis of nondominance, as discussed in the previous
section. In addition, we agglomerate the segments [0, 0.1] and [0.9, 1], putting the full
probability mass of the segment on z = 0.1 and z = 0.9 respectively.

In Table 1, we give the rejection probabilities of two asymptotic tests, based on the
minimised values of t(z) and LR1/2(z), as a function of sample size. The samples
drawn from A are of sizes NA = 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096. The
corresponding samples from B are of sizes NB = 7, 19, 43, 81, 187, 379, 763, 1531, and
3067, the rule being NB = 0.75NA − 5. The results are based on 10,000 replications.
Preliminary experiments showed that, when the samples from the two populations
were of the same size, or of sizes with a large greatest common divisor, the possible
values of the statistics were so restricted that their distributions were lumpy. For our
purposes, this lumpiness conceals more than it reveals, and so it seemed preferable to
choose sample sizes that were relatively prime.
The two test statistics turn out to be very close indeed in value when each is minimised
over z. This is evident in Table 1, but the results there concern only the tail of the
distributions of the statistics. In Figure 1, we graph P value plots for the two statistics,
over the full range from 0 to 1. See Davidson and MacKinnon (1998) for a discussion
of P value plots, in which is plotted the CDF of the P value for the test.
Two sample sizes are shown: NA = 32 and NA = 256. In the latter case, it is hard
to see any difference between the plots for the two statistics, and even for the much
smaller sample size, the differences are plainly very minor indeed.

In the experimental setup that gave rise to Figure 1, it was possible to cover the
full range of the statistics, since, even when there was nondominance in the sample,
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Table 1

NA α = 0.01 α = 0.01 α = 0.05 α = 0.05 α = 0.10 α = 0.10

tmin LRmin tmin LRmin tmin LRmin

16 0.001 0.000 0.005 0.005 0.013 0.017

32 0.000 0.000 0.004 0.004 0.017 0.015

64 0.001 0.001 0.009 0.010 0.026 0.030

128 0.003 0.003 0.021 0.021 0.048 0.047

256 0.001 0.006 0.033 0.033 0.070 0.069

512 0.010 0.010 0.039 0.039 0.082 0.082

1024 0.007 0.007 0.042 0.042 0.087 0.087

2048 0.010 0.010 0.043 0.043 0.087 0.087

4096 0.009 0.009 0.044 0.044 0.092 0.092

Rejection probabilities, asymptotic tests, base case, α = nominal level
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Figure 1: P value plots for asymptotic tests

we could evaluate the statistics as usual, obtaining negative values. This was for
illustrative purposes only. In practice, one would stop as soon as nondominance is
observed in the sample, thereby failing to reject the null hypothesis.
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It is clear from both Table 1 and Figure 1 that the asymptotic tests have a tendency to
underreject, a tendency which disappears only slowly as the sample sizes grow larger.
This is hardly surprising. If the point of contact of the two distributions is at z = z0,
then the distribution of t(z0) and LR1/2(z0) is approximately standard normal. But
minimising with respect to z always yields a statistic that is no greater than those
evaluated at z0. Thus the rejection probability can be expected to be smaller, as we
observe.

We now consider bootstrap tests based on the minimised statistics. In bootstrapping,
it is essential that the bootstrap samples are generated by a bootstrap data-generating
process (DGP) that satisfies the null hypothesis, since we wish to use the bootstrap in
order to obtain an estimate of the distribution of the statistic being bootstrapped under
the null hypothesis. Here, our rather artificial null is the frontier of nondominance, on
which the statistics we are using are asymptotically pivotal, by Theorem 3.

Since the results we have obtained so far show that the two statistics are very similar
even in very small samples, we may well be led to favour the minimum t statistic on
the basis of its relative simplicity. But the procedure by which the empirical likelihood
ratio statistic is computed also provides a very straightforward way to set up a suitable
bootstrap DGP. Once the minimising z is found, the probabilities (14) are evaluated
at that z, and these, associated with the realised sample values, the yAt and the yBs ,
provide distributions from which bootstrap samples can be drawn.

The bootstrap DGP therefore uses discrete populations, with atoms at the observed
values in the two samples. In this, it is like the bootstrap DGP of a typical resampling
bootstrap. But, as in Brown and Newey (2002), the probabilities of resampling any
particular observation are not equal, but are adjusted, by maximisation of the ELF,
so as to satisfy the null hypothesis under test. In our experiments, we used bootstrap
DGPs determined in this way using the probabilities (14), and generated bootstrap
samples from them. Each of these is automatically discretised in the tails, since the
“populations” from which they are drawn have atoms in the tails. For each bootstrap
sample, then, we compute the minimum statistics just as with the original data. Boot-
strap P values are then computed as the proportion of the bootstrap statistics that
are greater in value than the statistic from the original data.

In Table 2, we give results like those in Table 1, but for bootstrap tests rather than
asymptotic tests. For each replication, 399 bootstrap statistics were computed, Results
are given only for the empirical likelihood statistic, since the t statistic gave results
that were indistinguishable.
It is not necessary, and it would have taken a good deal of computing time, to give
results for sample sizes greater than those shown, since the rejection probabilities are
not significantly different from nominal already for NA = 128.

In Figure 2, P value plots are given for NA = 32 and 128, for the asymptotic and
bootstrap tests based on the empirical likelihood statistic. This time, we show results
only for P values less than 0.5, since the bootstrap DGP is not appropriate in cases of
nondominance in the sample.
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Table 2

NA α = 0.01 α = 0.05 α = 0.10

32 0.001 0.018 0.051

64 0.003 0.033 0.082

128 0.007 0.046 0.100

256 0.011 0.054 0.104

512 0.011 0.049 0.100

1024 0.011 0.053 0.105

Rejection probabilities, bootstrap tests, base case, α = nominal level
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Figure 2: P value plots for asymptotic and bootstrap tests

In the bootstrap context, if there is nondominance in the original samples, no boot-
strapping is done, and a P value of 1 is assigned. If there is dominance in the original
samples, an event which under the null has a probability that tends to one half as the
sample sizes tend to infinity, then bootstrapping is undertaken; each time the boot-
strap generates a pair of samples without dominance, since the bootstrap test statistic
would be negative, and so not greater than the positive statistic from the original sam-
ples, this bootstrap replication does not contribute to the P value. Thus a bootstrap
DGP that generates many samples without dominance leads to small P values and
frequent rejection of the null of nondominance.

– 18 –



From the figure, we see that, like the asymptotic tests, the bootstrap test suffers from
a tendency to underreject in small samples. However, this tendency disappears much
more quickly than with the asymptotic tests. Once sample sizes are around 100, the
bootstrap seems to provide very reliable inference.

We now look at the effects of altering the amount of discretisation in the tails of the
distributions. It turns out that these effects are quite different for the asymptotic and
bootstrap tests. In Figure 3 are shown P value plots for the asymptotic test for the
base case with NA = 128, for different amounts of agglomeration, the same amount in
each tail. It can be seen that the rejection rate diminishes steadily as the discretisation
is performed for values of z− progressively further into the tails, where discretisation
occurs for z < z− and for z > 1−z−. This behaviour is entirely as expected, in accord
with the discussion in Section 4. For values of z− in the range 0.10 to 0.16, the P value
plots are essentially identical.
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Figure 3: Effects of varying amounts of discretisation in the tails

With the bootstrap, the same is true for z− ∈ [0.07, 0, 13], but for either smaller or
greater values of z− the bootstrap test rejects the null on almost every occasion when
there is dominance in the sample. For small values of z−, the bootstrap DGP usually
makes the CDFs of the two bootstrap populations touch somewhere in one of the tails
rather in the middle of the distribution. This means that the bootstrap DGP is very
different from the true DGP, in such a way that there is almost always nondominance
in the bootstrap samples. Thus the bootstrap P value, as the proportion of bootstrap
statistics greater than the original one, is very close to zero.
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The same sort of thing happens with z− > 0.14. It appears that the excessive agglom-
eration again leads to a bootstrap DGP where the populations touch at one of the tail
atoms, with similar consequences. Whereas with small values of z−, the overrejection
is probably a generic phenomenon, it may be an artefact of our particular base case
for larger values of z−.

The base case we have considered so far is one in which B dominates A substantially
except at one point in the middle of the distribution. We now consider two other
configurations, the first in which the two distributions still touch in the middle, but
the dominance by B is less elsewhere. The cumulative probabilities at the upper limits
of the eight segments in this case are 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, and 1.0. The second
configuration has the two distributions touching twice, for values of z equal to 0.25
and 0.75. The cumulative probabilities are 0.10, 0.25, 0.35, 0.45, 0.55, 0.75, 0.85, and
1.00. With z− set to 0.1, the tests are now all conservative, with rejection probabilities
well below nominal in reasonably small samples. Figure 4 shows the P value plots for
NA = 64 and NB = 43 with tests based on the minimum t statistic. As usual, the
empirical likelihood statistic gives essentially indistinguishable results.
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Figure 4: Alternative configurations: first on left, second on right

In the second configuration, in which the distributions touch twice, the tests are still
more conservative than in the first configuration. In both cases, it can be seen that
the bootstrap test is a good deal less conservative than the asymptotic one. This
fact means also that the P value plots for the bootstrap test flatten out more quickly,
corresponding to cases in which there is nondominance in the samples. It is also
apparent that, in these two configurations, the probability of dominance in the original
data, which is the asymptote to which the P value plots tend, is substantially less than
a half.

Another configuration that we looked at needs no graphical presentation. If both
populations correspond to the uniform distribution on [0, 1], rejection of the null of
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nondominance simply did not occur in all our replications. Of course, when the dis-
tributions coincide over their whole range, we are far removed from the frontier of the
null hypothesis, and so we expect to have conservative tests.

We now turn our attention to considerations of power. Again, we study two con-
figurations in which population B dominates A. In the first, we modify our base
configuration slightly, using as cumulative probabilities at the upper limits of the seg-
ments the values 0.03, 0.13, 0.20, 0.40, 0.47, 0.57, 0,70, and 1.00. There is therefore
clear dominance in the middle of the distribution. The second configuration uses cu-
mulative probabilities of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1.0. This distribution is
uniform until the last segment, which has a much greater probability mass than the
others.

In Figure 5, various results are given, with those for the first configuration in the
left-hand panel and the second in the two right-hand panels. Both asymptotic and
bootstrap tests based on the minimum t statistic are considered, and z− is set to 0.1.
There is nothing at all surprising in the left-hand panel. We saw in Figure 2 that,
with the base configuration, the asymptotic test underrejects severely for NA = 32 and
NB = 19. Here, the rejection rate is still less than nominal level for those sample sizes.
With the base configuration, the bootstrap test also underrejects, but less severely,
and here it achieves a rejection rate modestly greater than the significance level. For
NA = 64 and NB = 43, the increased power brought by larger samples is manifest.
The asymptotic test gives rejection rates modestly greater than the level, but the
bootstrap test does much better, with a rejection rate of slightly more than 14% at a
5% level, and nearly 28% at a 10% level.
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Figure 5: Power curves

In the second configuration, power is uniformly much less. If we were to change
things so that the null of nondominance was satisfied, say by increasing the cumulative
probability in population B for z around 0.25, then the results shown in Figure 4
indicate that the tests would be distinctly conservative. Here we see the expected
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counterpart when only a modest degree of dominance is introduced, namely low power.
Even for NA = 128, the rejection rate of the asymptotic test is always smaller than the
significance level. With the larger sample sizes of the right-hand panel, some ability
to reject is seen, but it is not at all striking with NA = 256. In contrast, the bootstrap
test has some power for all sample sizes except NA = 64, and its rejection rate rises
rapidly in larger samples, although rejection rates comparable to those obtained with
the first configuration with NA = 64 are attained only for NA somewhere between 256
and 512.

The possible configurations of the two populations are very diverse indeed, and so
the results presented here can only be indicative. However, a pattern that emerges
consistently is that bootstrap tests outperform their asymptotic counterparts in terms
of both size and power. They are less subject to the severe underrejection displayed by
asymptotic tests even when the configuration is on the frontier of the null hypothesis,
and they provide substantially better power to reject the null when it is significantly
false.

Conventional practice often discretises data, transforming them so that the distribu-
tions have atoms at the points of a grid. Essentially, the resulting data are sampled
from discrete distributions. A few simulations were run for such data. The results
were not markedly different from those obtained for continuous data, discretised only
in the tails. The tendency of the asymptotic tests to underreject is slightly less marked,
because the discretisation means that the minimising z is equal to the true (discrete)
z0 with high probability. However, the lumpiness observed when the two sample sizes
have a large greatest common divisor is very evident indeed, and prevents simulation
results from being as informative as those obtained from continuous distributions.

9. Discussion and Conclusions

In this paper, we have adopted the point of view that, if we really wish to demon-
strate statistically that the distribution of population B stochastically dominates that
of population A at first order, then it is appropriate to use a null hypothesis of non-
dominance, since, if we reject it, all that is left is dominance. However, we show that
is it impossible to reject this null at any conventional significance level if we have con-
tinuous distributions and use all the observations in samples drawn from them. With
discrete distributions, this problem does not necessarily arise, and indeed, in practice,
many investigators explicitly or implicitly discretise their samples by setting up a grid
of points and agglomerating observations in the samples on to atoms at the points of
the grid.

If we are ready in the case of continuous distributions to discretise in the tails of the
distributions at least, then we have seen that it is easy to set up both asymptotic and
bootstrap tests for the null of nondominance. We consider two seemingly different
statistics, one the minimum t statistic of KPS, the other an empirical likelihood ratio
statistic. We show that the two statistics typically take on very similar values in
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practice, and that inference using one of them is indistinguishable from inference using
the other. The advantage of the empirical likelihood ratio statistic is that, in order
to compute it, we compute a set of probabilities that estimate the probabilities of the
populations under the hypothesis that they are at the frontier of nondominance, that
is, that they are such that there is dominance of A by B everywhere except at exactly
one point in the interior of the common support of the distributions.

This fact makes it possible to use the bootstrap in order to estimate the distributions
of either one of the two statistics under data-generating processes that are on the
frontier of nondominance. In fact, we show that the statistics are asymptotically
pivotal on the frontier, so that we can expect that the bootstrap will provide more
reliable inference than the asymptotic distributions of the statistics. This turns out
to be the case in a selection of configurations that we study by means of simulation
experiments. Our preferred testing procedure is thus a bootstrap procedure, in which
the bootstrap samples are generated using the probabilities computed in the process of
evaluating the empirical likelihood ratio statistic. It does not seem to matter whether
the minimum t statistic or the likelihood ratio statistic is used.

Most of the literature on testing relations between a pair of distributions deals with
tests for which the null hypothesis is dominance. It is plausible to suppose that these
tests too can be dealt with by the methods of empirical likelihood, but it is less simple
to do so. For this sort of test, we do not reject the null of dominance unless there
is nondominance in the sample. In that case, we wish to find the distributions that
respect the null of dominance and are closest, by the criterion of the empirical like-
lihood, to the unrestricted estimates that exhibit nondominance. These distributions
must of course lie on the frontier of the null hypothesis. In general, however, it is not
enough to require that there should be just one point y ∈ Y at which the restricted
estimates coincide. In Wolak (1989), this matter is considered for the case of discrete
distributions, and it is shown that locating the pair of distributions closest to a pair of
sample distributions which display nondominance involves the solution of a quadratic
programming problem. Further, the asymptotic distribution of the natural test statis-
tic, under a DGP lying on the frontier, is a mixture of chi-squared distributions that
is not as simple to treat as the standard normal asymptotic distributions found in this
paper. It remains for future research to see whether empirical likelihood methods,
used with continuous distributions, can simplify tests with a null of dominance.

Appendix

Proof of Theorem 1:

For K = A,B, NK(z) = NK F̂K(z) and MK(z) = NK(1− F̂K(z)). Therefore

NK(z) logNK(z) +MK(z) logMK(z)
=NK logNK +NK

(
F̂K(z) log F̂K(z) + (1− F̂K(z)) log(1− F̂K(z))

)
. (27)

– 23 –



Further,
( ∑

K=A,B

NK(z)
)

log
( ∑

K=A,B

NK(z)
)

+
( ∑

K=A,B

MK(z)
)

log
( ∑

K=A,B

MK(z)
)

=

N logN +
( ∑

K=A,B

NK F̂K(z)
)

log
( ∑

K=A,B

NK
N

F̂K(z)
)

+

( ∑

K=A,B

NK(1− F̂K(z))
)

log
( ∑

K=A,B

NK
N

(1− F̂K(z))
)

(28)

From (16), we see that LR(z) is equal to twice the expression

∑

K=A,B

(
NK(z) logNK(z) +MK(z) logMK(z)−NK logNK

)
+N logN

−
( ∑

K=A,B

NK(z)
)

log
( ∑

K=A,B

NK(z)
)

+
( ∑

K=A,B

MK(z)
)

log
( ∑

K=A,B

MK(z)
)

From (27) and (28), this expression can be written as

−
∑

K=A,B

NK F̂K(z) log
(NAF̂A(z) +NBF̂B(z)

NF̂K(z)

)

−
∑

K=A,B

NK(1− F̂K(z)) log
(N − (NAF̂A(z) +NBF̂B(z))

N(1− F̂K(z))

)
. (29)

Consider now the first sum in the above expression, which can be written as

−(NAF̂A(z) +NBF̂B(z)
)

log
(
NAF̂A(z) +NBF̂B(z)

)

+NAF̂A(z) logNF̂A(z) +NBF̂B(z) logNF̂B(z). (30)

Define ∆(z) ≡ F̂A(z) − F̂B(z). Then we see that NAF̂A(z) + NBF̂B(z) = NF̂B(z) +
NA∆(z). Making these substitutions lets us write expression (30) as

−(NF̂B(z) +NA∆(z)
)(

logNF̂B(z) + log
(

1 +
NA∆(z)
NF̂B(z)

))

+NA(F̂B(z) +∆(z))
(
logNF̂B(z) + log

(
1 +∆(z)/F̂B(z)

))
+NBF̂B(z) logNF̂B(z).

Taylor expanding up to second order in ∆(z) then gives

(−N +NA +NB)F̂B(z) logNF̂B(z)−NA∆(z) + 1−
2

N2
A∆

2(z)
NF̂B(z)

−NA∆(z) logNF̂B(z)

−N
2
A∆

2(z)
NF̂B(z)

+NA∆(z)− 1−
2

NA∆
2(z)

F̂B(z)
+NA∆(z) logNF̂B(z) +

NA∆
2(z)

F̂B(z)
+Op(N−1/2),
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since, under our assumptions, NK = Op(N) and ∆(z) = OP (N−1/2). The term
independent of ∆(z) in the above expression and the terms linear in ∆(z) all cancel,
and so what remains is just a term of order unity and a remainder that tends to zero
as N →∞:

1−
2

NA(N −NA)∆2(z)
NF̂B(z)

+Op(N−1/2) = 1−
2

NANB∆
2(z)

NF̂B(z)
+Op(N−1/2).

Since F̂B(z) = F (z) +Op(N−1/2), this expression is equal to NANB∆2(z)/2NF (z) to
the same order. An exactly similar calculation for the second line of (29) shows that,
to the same order of approximation, it is equal to NANB∆

2(z)/2N(1 − F (z)). The
entire expression (29) is therefore

1−
2

NANB∆
2(z)

N

( 1
F (z)

+
1

1− F (z)

)
= 1−

2

NANB∆
2(z)

NF (z)(1− F (z))
+Op(N−1/2). (31)

Finally, since NA/N → r as N →∞ and NB/N → 1− r, we see that the large-sample
limit of LR(z), which is twice that of (31), is

r(1− r)
F (z)(1− F (z))

plim
N→∞

N∆2(z),

which is the leading-order term on the right-hand side of (18), as required.

Proof of Theorem 2:

The proof relies on the following construction, which is trivial if we are dealing with
two continuous distributions, but requires some care if either one or both contain
atoms.

Consider two CDFs F and G such that G weakly stochastically dominates F at first
order. Let Y be a random variable of which the CDF is F . We construct a random
variable Z, of which the CDF is G, as follows. If y is a realisation of Y , the corre-
sponding realisation of Z is computed according to a rule that depends on whether
y is a continuity point of F . If it is, let p = F (y). Then z, the realisation of Z, is given
by

z = sup
w
{w |G(w) < p}. (32)

Thus, if there exists a w such that G(w) = p, then, since G is continuous to the right,
we have

z = inf
w
{w |G(w) = p}. (33)

Otherwise, if there is no w with G(w) = p, there must exist w such that G is discon-
tinuous at w, jumping from a value p− < p to the left of w to a value p+ > p at w.
Then it follows from (32) that z = w.
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Next suppose that y is an atom of the distribution F , such that F (y−) = p− and
F (y) = p+. Let p = p− + (p+ − p−)u, where u is a realisation of a random variable
distributed uniformly on the [0, 1] interval, independently of anything else. Then z is
again computed using the formula (32) with this new definition of p.

Denote by P the random variable of which the realisation is p, defined as a function of
the realisation y and possibly also a realisation u. Then P is distributed uniformly on
[0, 1]. To see this, first let p be such that there exists y such that p = F (y) and y is a
continuity point of F . Then Pr(P ≤ p) = Pr(F (Y ) ≤ F (y)) = Pr(Y ≤ y) = F (y) = p.
Next, let p be such that F has an atom at some y for which F (y−) = p− < p and
F (y) = p+ ≥ p. The event P ≤ p can then be realised in two ways: first, if Y < y,
of which the probability is p−, and, second, if Y = y and the realisation u satisfies
the condition p− + (p+ − p−)u ≤ p. Since Y and the random variable of which u is a
realisation are independent, the probability of this second event is the product of the
probability that Y = y, which is p+ − p−, and (p − p−)/(p+ − p−), the probability
that the realisation u satisfies the required condition. Adding up, we find that, in this
case,

Pr(P ≤ p) = p− + (p+ − p−)
p− p−
p+ − p− = p.

Thus in all cases Pr(P ≤ p) = p, so that P is distributed uniformly on [0, 1].

We now have to show that Z, defined in terms of P by means of the relation (32)
between their realisations, is such that Z ≥ Y almost surely, and that it has G for
its CDF. Note first that (32) defines z as a (weakly) increasing function of p. Now
suppose on the one hand that p is such that there exists w with G(w) = p, Then,
by (33), the realisation z is the smallest such w. It follows that Pr(Z ≤ w) = Pr(P ≤
p) = p = G(z). Further, since G(z) = p ≥ F (y−) ≥ G(y−) given that G dominates F ,
it follows that z ≥ y unless G(z) = F (z) = G(y−) = F (y−) and y > z. However, in
this last case, realisations of Y in the range [z, y[ are of probability zero, so that the
set of realisations with y > z has probability zero. If on the other hand there is no w
with G(w) = p, then, as above,there must exist a w at which G has an atom, with
G(w−) = p− and G(w) = p+; p ∈ ]p−, p+[, and z = w. But then Pr(Z ≤ w) = Pr(P ≤
p+) = G(w). In this case, we have that G(w) > p ≥ F (y−) ≥ G(y−), and so again
w ≥ y. Thus in all cases w ≥ y, so that Z ≥ Y almost surely, and Pr(Z ≤ w) = G(w),
as we wished to show.

Each random sample of independent observations from the distribution F can be con-
verted into a random sample from the distribution G by transforming each realisation y
into the realisation z by the above construction. Let YN be the random variable re-
alisations of which are IID random samples drawn from F . We may also define the
random variable ZN as a deterministic function of YN , by converting the sample el-
ement by element. The random variable ZN then has the same distribution as the
random variable realisations of which are IID random samples drawn from G. Since
every observation from F is smaller than the corresponding one in the converted sam-
ple, it follows that the EDF of the sample from F is stochastically dominated at first
order by that from G almost surely.
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Applying this result to a change in distribution FB to a new distribution that stochas-
tically dominates the old one, we see that, for any random sample drawn from FB , and
for all z, the EDF F̂B(z) of the converted sample becomes smaller. Similarly, a change
in FA towards a more dominated distribution makes the EDF F̂A(z) greater. Further,
the minimum value of t(z) or of LR(z) after such changes cannot be less than before.
Thus the theorem is proved once we show that the square root statistics defined in the
statement of the theorem are increasing functions of F̂A(z) for all z and decreasing
functions of F̂B(z).

We compute the derivative with respect to F̂A(z) of t(z) as given by the square root
of expression (17). This square root can be written in the form

C
x− y

(
x(1− x) + k

)1/2 (34)

where x = F̂A(z), y = F̂B(z), k = (NA/NB)F̂B(z)(1 − F̂B(z)), and C is a positive
constant. The derivative of expression (34) with respect to x is C times

2x(1− x) + 2k − (x− y)(1− 2x)

2
(
x(1− x) + k

)3/2 .

This expression is certainly positive unless x−y and 1−2x have the same sign. Suppose
first that x ≤ 1/2 and x− y > 0. Then, since y ≥ 0, x ≥ x− y and so

2x(1− x)− (x− y)(1− 2x) ≥ 2x(1− x)− x(1− 2x) = x ≥ 0.

Similarly, if x ≥ 1/2 and x− y < 0, we see that |x− y| ≤ 1− x. Then

2x(1− x)− (y − x)(2x− 1) ≥ 2x(1− x)− (1− x)(2x− 1) = 1− x ≥ 0.

Thus the derivative is positive in all cases. The proof that the derivative of t(z) with
respect to F̂B(z) is negative is exactly similar.

The statistic LR(z) is given by twice the expression (29). The first line of (29) is in
turn equal to (30), of which the derivative with respect to F̂A(z) is

−NA log
(
NAF̂A(z) +NBF̂B(z)

)−NA +NA logNF̂A(z) + (NA/N)N

= −NA log
(

1− NB∆(z)
NF̂A(z)

)
.

Since NB/(NF̂A(z)) is positive, this expression has the same sign as ∆(z). Similarly,
the derivative of the second line of (29) with respect to F̂A(z) is

NA log
(

1 +
NB∆(z)

N(1− F̂A(z))

)
,

of which the sign is also the same as that of ∆(z). Since the square root statistic is
defined to have the same sign as∆(z), its derivative with respect to F̂A(z) is everywhere
nonnegative. This completes the proof.
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Proof of Theorem 3:

Under the restricted null hypothesis of the statement of the theorem, the statistic
t(z0) is distributed asymptotically as N(0, 1). The probability that t(z0) ≤ z1−α,
where z1−α is the (1 − α) quantile of N(0, 1), therefore tends to 1 − α as N → ∞.
The probability that the minimum over z ∈ Y ◦ of t(z) is less than z1−α is therefore
no smaller than 1 − α asymptotically. Thus the probability of rejecting the null of
nondominance on the basis of the minimum of t(z) is no greater than α. This is the
standard intersection-union argument used to justify the use of the minimum of t(z)
as a test statistic.

In Theorem 2.2 of KPS, it is shown that, if the distributions A and B belong to the
restricted null hypothesis, then the probability of rejecting the null is actually equal
to α asymptotically. We conclude therefore that the asymptotic distribution of the
minimum of t(z) is N(0, 1). Since this is a unique distribution, it follows that this
statistic is asymptotically pivotal for the restricted null. The local equivalence of t(z)
and LR1/2(z) shown in Theorem 1 then extends the result to the empirical likelihood
ratio statistic.
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