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ABSTRACT

In this paper, we study the problem of testing hypotheses on the parameters of a stochastic
volatility model (SV), allowing for the possible presence of identification problems that can
lead to nonstandard asymptotic distributional theory. We focus on the development of exact
procedures whose size can be controlled in finite samples, as well as computationally simple
large-sample tests with better finite-sample properties. We consider Wald-type, score-type
and likelihood-ratio-type tests based on a computationally simple moment (non maximum-
likelihood) estimator. We also propose a C(α)-type test which is very easy to implement and
exhibits relatively good size and power properties. Besides usual linear restrictions on the
SV model coefficients, the problems studied include testing homoskedasticity against a SV
alternative – which raises identification issues - as well testing a specification test for the null
hypothesis of linear volatility against a fractionally integrated model on volatility. Based
on the above testing methodology, we further test for the null hypothesis of two factors
driving the dynamic of the volatility process against only one factor. Three ways of imple-
menting tests based on alternative statistics are compared: asymptotic critical values (when
available), a local Monte Carlo test (or parametric bootstrap) procedure, and a maximized
Monte Carlo (MMC) procedure. The size and power properties of the proposed procedures
are examined in a simulation experiment. The results indicate that the C(α)-based tests
have the best size and power properties, while Monte Carlo tests are much more reliable than
those based on asymptotic critical values. Further, in cases where the parametric bootstrap
appears to fail (for example, in the presence of identification problems), the MMC procedure
easily controls the level of the tests. Finally, we present an application to a long time series
of returns on the Standard and Poor’s Composite Price Index.

Key words: exact tests; Monte Carlo tests; C(α)-tests; specification test; stochastic
volatility; fractionally integrated volatility; two-factor volatility process.
JEL classification: C1, C13, C12, C32, C15.
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1. Introduction

Evaluating the likelihood function of ARCH models is relatively easy compared to Stochastic
Volatility models (SV) for which it is impossible to get an explicit closed-form expression
for the likelihood function [see Shephard (1996), Mahieu and Schotman (1998)]. This is a
generic feature common to almost all nonlinear latent variable models due to the curse of
the high dimensionality of the integral appearing in the likelihood function of the stochastic
volatility model. This is the reason why econometricians were reluctant to use this kind
of models in their applications for a long time since in this setting, maximum likelihood
methods are computationally intensive. But ever since progress has been made regarding
the estimation of nonlinear latent variable models in general and stochastic volatility mod-
els in particular. It mainly exists three types of methods, namely, quasi-exact methods,
simulation-based-estimation methods and bayesian methods. Thus, we can mention the
Quasi Maximum Likelihood (QML) approach suggested by Nelson (1988) and Harvey, Ruiz
and Shephard (1994), Ruiz (1994), a Generalized Method of Moments(GMM) procedure
proposed by Melino and Turnbull (1990). On the other hand, increased computer power has
made simulation-based estimation methods more attractive among which we can mention
the Simulated Method of Moments (SMM) proposed by Duffie and Singleton (1993), the
indirect inference approach of Gouriéroux, Monfort and Renault (1993) and the moment
matching methods of Gallant and Tauchen (1996). But computer intensive Markov Chain
Monte Carlo methods applied to SV models by Jacquier, Polson and Rossi (1994) and Kim
and Shephard (1994), Kim, Shephard and Chib (1998), Wong(2002a,2002b) and simulation-
based Maximum Likelihood (SML) method proposed by Danielsson and Richard (1993),
Danielsson (1994), are the most efficient methods to estimate this kind of models. In par-
ticular, Danielsson (1994), Danielsson and Richard (1993) develop an importance sampling
technique to estimate the integral appearing in the likelihood function of the SV model.
In a Bayesian setting, Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998)
combine a Gibbs sampler with the Metropolis-Hastings algorithm to obtain the marginal
posterior densities of the parameters of the SV model.

In contrast, the major contribution of this paper is to provide asymptotic and exact
inference techniques for testing hypotheses on the parameters of the log-normal stochastic
volatility model with an autoregressive mean part. Indeed, the standard form as set forth,
for instance, in Harvey, Ruiz, and Shephard (1994), Jacquier, Polson, and Rossi (1994),
Danielsson (1994), takes the form of an autoregression whose innovations are scaled by an
unobservable volatility process, usually distributed as a lognormal autoregression but other
distributions (Student, mixture of normal distributions) can be considered [see Kim, Shep-
hard and Chib (1998), Mahieu and Schotman (1998), Wong (2002a,2002b)]. The stochastic
volatility specification we have chosen here comes from Gallant, Hsieh, Tauchen (1997),
Tauchen (1996). Whereas all the authors quoted above, mainly focus on estimation per-
formance for the stochastic volatility model, often preoccupied by efficiency considerations
[e.g. bayesian methods, Efficient Method of Moments], our paper instead is mostly moti-
vated by inference techniques applied to the stochastic volatility model. Our concern for

1



inference, in particular for simulation-based inference such as the technique of Monte Carlo
tests introduced by Dwass (1957) for permutation tests, and later extended by Barnard
(1963) and Birnbaum (1974), requires an estimation method easy to implement. Thus, the
estimation method used in this paper is mainly a method of moments [see Taylor (1986)]
in two steps which coincides with the GMM procedure in the particular case that the au-
toregressive mean part vanishes. For a detailed presentation of the estimation technique
applied to the SV model with an autoregressive conditional mean part, see Dufour and
Valéry (2004). As econometricians previously quoted mainly focused on efficient estima-
tion procedures to estimate the SV model, they mostly examined specification tests such
as the χ2 tests for goodness of fit in Andersen and Sorensen (1996), Andersen, Chung and
Sorensen (1999), specification tests with diagnostics in Gallant, Hsieh and Tauchen (1997),
χ2 specification tests through Indirect Inference criterion in Monfardini (1997), or likelihood
ratio tests statistics for comparative fit in Kim, Shephard and Chib (1998). As a result,
inference techniques for testing hypotheses on parameters of the stochastic volatility model
remained underdeveloped, apart from standard t-tests for individual parameters in Ander-
sen and Sorensen (1996), in Andersen, Chung and Sorensen (1999) often performed with
size distorsions.

In this setting, the aim of the paper is to fulfill the gap for testing hypotheses on pa-
rameters of the SV model, more precisely, to propose exact tests in the sense that the tests
have correct levels in small samples. To do this, we implement the three standard test
statistics that is the Wald-type, score-type and likelihood-ratio-type test based on a com-
putationally simple method-of-moments estimator available in closed form [see Dufour and
Valéry (2004)]. We further consider a C(α)-type test [see Ronchetti (1987), Berger and
Wallenstein (1989), Kocherlakota and Kocherlakota (1991)] which is very easy to implement
in our framework and demonstrates good size and power properties. Using these test pro-
cedures, we test the null hypothesis of no persistence in the volatility against alternatives
of strong persistence in the volatility process.Testing for the presence or not of strong serial
correlation in the volatility process is relevant mostly for speculative returns which tend
to display systematic long-range volatility dependencies in general and more specifically for
option pricing predictions. Indeed, a strong serial correlation in the underlying volatility
process will help minimizing the pricing error of future option prices computed on the basis
of both current realized and implied volatilities. In this respect, a stream of the option pric-
ing literature has seized the importance of this issue by allowing for long-range dependence
in the volatility process when compared with the standard stochastic volatility model or the
ARCH family, using thereby a fractional integration process whose autocorrelation function
is known to decrease at a much slower rate, a hyperbolic decay rate, than that of the stan-
dard stochastic volatility process or the ARCH-type family [see Breidt,Crato, Lima (1998)
for detection and estimation of a long-memory feature in a discrete time stochastic volatility
model , see Comte and Renault (1998) for the continuous time stochastic volatility and
Comte, Coutin and Renault (2003), Ohanissian, Russel and Tsay (2003) for its applications
to option pricing]. In this regards, we propose a specification test for testing the null hypoth-
esis of linearity in the volatility process against a fractionally integrated volatility process
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by means of a likelihood-ratio-type test statistic for comparative fit. Furthermore,we also
provide a joint test for testing homoskedasticity in the volatility process. In this respect,
a statistical check for homoskedasticity in the stochastic volatility model could be viewed
as a relevant pre-test before trying to include a latent factor to drive the dynamic of the
volatility process which makes its estimation much more complicated. We further test for
the null hypothesis of one factor driving the dynamic of the volatility process against two
SV factors. As pointed out by Chernov et al (2003), Durham (2004a, 2004b), standard SV
models are not able to capture all aspects of asset returns distribution such as tail thickness.
As a solution, introducing a second factor in the volatility dynamic may act as a factor dedi-
cated to exclusive modelling of tail behavior while the first factor may rather model the long
memory component. Eraker et al(2003) propose to model the same feature by introducing
a jump component to the SV factor. However, testing for homoskedasticity arises strong
anomalies as the moment conditions become no more identifying under the null. Similarly,
when testing for the number of factors in the volatility process, the correlation parameter
between the two factors become unidentified under the null arising thereby severe identifica-
tion issues. In presence of such irregularities, the standard asymptotic distribution is known
to fail and one has to resort to either nonstandard inference techniques or simulation-based
inference techniques such as Monte Carlo tests to still conduct valid inference in such sit-
uations. Andrews (2001) derives the asymptotic null and local alternative distributions of
quasi-likelihood ratio, rescaled quasi-likelihood ratio, Wald, and score tests when standard
regularity conditions fail to hold. As an example, he tests the null hypothesis of no condi-
tional heteroskedasticity in a GARCH(1,1) regression model which makes the GARCH AR
parameter unidentified under the null.

In a Monte Carlo study we compare the finite sample properties of the standard asymp-
totic techniques to the technique of Monte Carlo tests which is valid in finite samples and
allow for test statistics whose null distribution may depend on nuisance parameters. In
particular maximized Monte Carlo tests (MMC) introduced by Dufour (2002) have the
exact level in finite samples when the p-value function is maximized over the entire set of
nuisance parameters. In contrast to MMC tests which are highly computer intensive, simpli-
fied (asymptotically justified) approximate versions of Monte Carlo tests provide a halfway
solution which achieves to control the level of the tests while being less computationally
demanding. We finally illustrate the test procedures by providing an application on a long
time return series on the Standard and Poor’s Composite Price Index.

The paper is organized as follows. Section 2 sets the framework and the assumptions
underlying the one-factor SV model and reviews the estimation procedure used to implement
the tests. Section 3 presents the two-factor SV model along with the corresponding moment
conditions used in the estimation procedure. Section 4 is devoted to the specification test
of linear volatility against fractionally integrated volatility in the one-factor SV model. Hy-
pothesis testing is examined in Section 5 where we also discuss how to build confidence sets
by inverting the test statistics. In Section 6 we review the technique of Monte Carlo tests.
Simulation results are displayed in Section 7 while empirical results on the Standard and
Poor’s Composite Price Index 500 return series are discussed in Section 8. Section 9 finally
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concludes.

2. The one-factor SV model

The basic form of the stochastic volatility model we study here for yt comes from Gallant,
Hsieh, Tauchen (1997). Let yt denote the first difference over a short time interval, a day
for instance, of the log-price of a financial asset traded on securities markets.

Assumption 2.1 The process {yt, t ∈ N} follows a stochastic volatility model of the type:

yt − µy =
Ly∑
j=1

cj(yt−j − µy) + exp(wt/2)ryzt , (2.1)

wt − µw =
Lw∑
j=1

aj(wt−j − µw) + rwvt , (2.2)

where µy, {cj}Ly

j=1, ry, µw, {aj}Lw
j=1 and rw are the parameters of the two equations, called

the mean and volatility equations respectively. st = (yt, wt)′ is initialized from its stationary
distribution.

The lag lengths of the autoregressive specifications used in the literature are typically short,
e.g. Lw = 1, Ly = 1, or Ly = 0, or Lw = 2, Ly = 2 [see e.g. Andersen and Sorensen (1996),
Gallant, Hsieh, Tauchen (1997), Andersen, Chung and Sorensen (1999)]. In this regards, a
simplified version of model (2.1)-(2.2) consists in setting µw = 0 and cj = aj = 0, ∀j ≥ 2,
and ρ = (c, θ′1)′ with θ1 = (a, ry, rw)′. We then have:

yt − µy = c(yt−1 − µy) + exp(wt/2)ryzt , |c| < 1 (2.3)

wt = awt−1 + rwvt , |a| < 1 . (2.4)

We shall call the model represented by equations (2.3)-(2.4) the stochastic volatility model
with an autoregressive mean part of order one [AR(1)-SV for short].

Assumption 2.2 The vectors (zt, vt)′, t ∈ N are i.i.d. according to a N(0, I2) distribution.

Assumption 2.3 The process st = (yt, wt)′ is strictly stationary.

The process is Markovian of order Ls = max(Ly, Lw). Let

ρ = (µy, c1, . . . , cLy , ry, µw, a1, . . . , aLw , rw)′ (2.5)

denote the parameter vector of the stochastic volatility model. The process {yt} is ob-
served whereas {wt} is regarded as latent. Accordingly, the joint density of the vector
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of observations ȳ = (y1, . . . , yT ) is not available in closed form since it requires evalu-
ating an integral with dimension equal to the whole path of the latent volatilities. Let
F (ȳ) = F (y1, . . . , yT ) = P [Y1 ≤ y1, . . . , YT ≤ yT |ρ] denote its unknown distribution func-
tion

To estimate the AR(1)-SV model above, we consider a two-step method whose first
step consists in applying ordinary least squares (OLS) to the mean equation which yields a
consistent estimate of the autoregressive parameter c and of the mean parameter µy, denoted
by ĉT , µ̂yT and the residuals ût ≡ ut(ĉT ) = yt − µy − ĉT (yt−1 − µy). Then, we apply in a
second step a method of moments to the residuals ût to get the estimate of the parameter
θ1 = (a, ry, rw)′ of the mean and volatility equations. In the sequel we will focus on the
particular case where µy = 0 but all the results still hold in the general case. In the two
propositions below, we recall the moments of the volatility process as well as the estimating
equations defining the moment estimator of θ. For a detailed proof of these propositions,
the reader is referred to Dufour and Valéry (2004).

Proposition 2.4 Moments of the volatility process.
Under Assumptions 2.1,2.2,2.3, with µy = µw = 0 and cj = aj = 0, ∀ j ≥ 2. Then ut has
the following moments for even values of k and l:

µk(θ1) ≡ E(uk
t ) = rk

y

k!
2(k/2)(k/2)!

exp[
k2

8
r2
w/(1 − a2)] , (2.6)

µk,l(m|θ1) ≡ E(uk
t u

l
t+m)

= rk+l
y

k!
2(k/2)(k/2)!

l!
2(l/2)(l/2)!

exp[
r2
w

8(1 − a2)
(k2 + l2 + 2klam)] . (2.7)

The odd moments are equal to zero.

In particular, for k = 2, k = 4 and k = l = 2 and m = 1, we get as in Jacquier, Polson and
Rossi (1994):

µ2(θ1) = E(u2
t ) = r2

y exp[r2
w/2(1 − a2)] , (2.8)

µ4(θ1) = E(u4
t ) = 3r4

y exp[2r2
w/(1 − a2)] , (2.9)

and
µ2,2(1|θ1) = E[u2

t u
2
t−1] = r4

y exp[r2
w/(1 − a)] . (2.10)

Solving the above moment equations corresponding to k = 2, k = 4 and m = 1 yields the
following proposition.

Proposition 2.5 Estimating equations.
Under the assumptions of Proposition 2.4, we have:

a =
[log(µ2,2(1|θ1)) − log(3) − 4 log(µ2) + log(µ4)]

log( µ4

3(µ2)2
)

− 1 , (2.11)
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ry =
31/4µ2

µ
1/4
4

, (2.12)

rw =
(

log(
µ4

3(µ2)2
)(1 − a2)

)1/2

. (2.13)

Given the latter proposition, it is easy to compute a method-of-moments estimator for
θ1 = (a, ry, rw)′ replacing the theoretical moments by sample counterparts based on the
residuals ût. Let θ̂T denote the method-of-moments estimator of θ1. Typically, E(u2

t ),
E(u4

t ) and E(u2
t u

2
t−1) are approximated by:

µ̂2 =
1
T

T∑
t=1

û2
t µ̂4 =

1
T

T∑
t=1

û4
t , µ̂2(1) =

1
T

T∑
t=1

û2
t û

2
t−1

respectively. θ̂T is consistent and asymptotically normally distributed. See Dufour and
Valéry (2004) for an exhaustive presentation of its asymptotic properties.

3. The two-factor SV model

A simple single-factor SV model appears to be sufficient to capture the salient properties of
volatility such as randomness and persistence. It is the shape of the conditional distribution
of financial returns that is the problem [see Chernov et al (2003), Durham (2004a, 2004b)].
Standard SV models cannot match the high conditional kurtosis of returns (tail thickness)
documented in the financial literature, of which equities are the most prominent example.
Trying to capture nonlinearities in financial returns presents important implications for risk
management and option pricing.

Hence, in this section we consider a two-factor specification driving the dynamic of the
volatility process of the following form:

yt − µy = c(yt−1 − µy) + exp(wt/2 + ηt/2)ryzt , |c| < 1 (3.14)

wt = awwt−1 + rwv1t , |aw| < 1 , (3.15)

ηt = bηηt−1 + rηv2t , |aη| < 1 , (3.16)

with corr(v1t, v2t) = ρ12. The perturbations vit, i = 1, 2 are N(0, 1) and independent of
zt. We shall call the above model represented by equations (3.14)-(3.16) the autoregressive
stochastic volatility model with two factors. Let θ2 = (aw, ry, rw, bη, rη, ρ12)′ denote the
parameter corresponding to the two-factor SV model. We derive the moment conditions
used in a just-identified GMM framework which are stated in the proposition below.
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Proposition 3.1 Moment conditions for the two-factor SV model.

µ2(θ2) = E(u2
t ) = r2

y exp
(

1
2

r2
w

1 − a2
w

+
1
2

r2
η

1 − a2
η

+
rwrηρ12

1 − awaη

)
, (3.17)

µ4(θ2) = E(u4
t ) = 3r4

y exp
(

2
r2
w

1 − a2
w

+ 2
r2
η

1 − a2
η

+ 4
rwrηρ12

1 − awaη

)
, (3.18)

µ6(θ2) = E(u6
t ) = 15r6

y exp
(

9
2

r2
w

1 − a2
w

+
9
2

r2
η

1 − a2
η

+ 9
rwrηρ12

1 − awaη

)
, (3.19)

µ2,2(1|θ2) = E[u2
t u

2
t−1] = r4

y exp(
σ2

2
) , (3.20)

µ4,4(1|θ2) = E[u4
t u

4
t−1] = 9r8

y exp(2σ2) , (3.21)

µ6,6(1|θ2) = E[u6
t u

6
t−1] = 225r12

y exp(
9
2
σ2) , (3.22)

where

σ2 = 2
r2
w

1 − a2
w

+ 2
r2
η

1 − a2
η

+ 4
rwrηρ12

1 − awaη
+ 2aw

r2
w

1 − a2
w

+ 2
awrwrηρ12

1 − awaη
+ 2rwrηρ12

+ 2
aηrwrηρ12

1 − awaη
+ 2aη

r2
η

1 − a2
η

. (3.23)

These moment conditions will serve as a basis in the GMM set up for testing the number
of SV factors in the volatility process. In a multivariate system, some authors did focus
on testing for the number of SV factors in modelling the conditional heteroskedasticity in
multivariate GARCH models. More specifically, Lanne and Saikkonen (2002) derive rank
tests for the number of factors in an orthogonal GARCH system introduced by Alexander
(2001) as a generalization of the GARCH factor model [see Engle (1984), Engle, Ng and
Rothschild (1990), ...] to a multifactor model with orthogonal factors. More recently,
Quintos (2005) extends Lanne and Saikkonen rank tests by allowing not only k factors
that are conditionally heteroskedastic but also the remaining p − k factors in a p-variate
system but with less persistence.

4. Specification test for the one-factor SV model

In this section we propose a specification test to test the null hypothesis of linearity in
the volatility process as stated in equation (2.4) against the alternative of a fractionally
integrated Gaussian process for the volatility where equation (2.4) is replaced by:

(1 − B)dwt = ηt , ηt
i.i.d.∼ N(0, σ2

η) (4.24)

7



where d ∈ (−0.5, 0.5). When d is restricted to this domain, wt is stationary and invertible
[see Hosking (1981)]. By denoting vt(θ̃) = exp(wt/2)ryzt where θ̃ = (d, ry, σ

2
η)

′, we review
the first two moments of vt(θ̃) obtained from properties of the log-normal distribution as it
is stated in Breidt, Crato and de Lima (1998):

µ2(θ̃) = E(vt(θ̃)2) = r2
y exp[γ(0)/2] , (4.25)

µ4(θ̃) = E(vt(θ̃)4) = 3r4
y exp[2γ(0)] , (4.26)

and
µ2,2(h|θ̃) = E[vt(θ̃)2vt−h(θ̃)2] = r4

y exp[γ(0)(1 + ρ(h))] , (4.27)

where the auto-covariance and autocorrelation functions for the long-memory process {wt},
denoted by γ(·) and ρ(·) are given by:

γ(0) = σ2
η

Γ (1 − 2d)
Γ 2(1 − d)

, (4.28)

ρ(h) =
Γ (h + d)Γ (1 − d)
Γ (h − d + 1)Γ (d)

, , h = 1, 2, . . . , (4.29)

[see Brockwell and Davis, (1991), p.522]. Then, the likelihood-ratio-type test statistic for
comparative fit that is investigated here is given by:

ξ̃C
T = T [M∗

T (θ̂T |M0) − M∗
T (θ̃T |M1)] (4.30)

where
M∗

T (θ|Mi) ≡ [ḡT (Û) − µ(θ|Mi)]′Ω̂∗−1[ḡT (Û) − µ(θ|Mi)], i = 0, 1 (4.31)

to test the null hypothesis that the true model, denoted by M0 is the linear volatility process
against the alternative M1 which is the fractionally integrated gaussian volatility process.

5. Hypotheses tests and confidence sets

In this section we shall set the framework for testing general hypotheses as H0 : F ∈ H0,
where H0 is a subset of all possible distributions for the stochastic volatility model (2.3)-
(2.4), that is,

H0 ≡ {F (.) : F (ȳ) = F0(ȳ|ψ(θ)) and ψ(θ) = 0} , (5.32)

where ψ(θ) is a p × 1 continuously differentiable function of θ. H0 is usually abbreviated
as: H0 : ψ(θ) = 0. The derivative of the constraints P (θ) = ∂ψ

∂θ′ has full row rank. Let θ̂T

be the unrestricted estimator and θ̂c
T the constrained estimator obtained by minimizing the

following criterion under H0:

M∗
T (θ) ≡ [ḡT (Û) − µ(θ)]′Ω̂∗−1[ḡT (Û) − µ(θ)] . (5.33)
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The Wald statistic is defined as

ξW
T = Tψ(θ̂T )′[P̂ (Ĵ ′Î−1Ĵ)−1]−1ψ(θ̂T ) (5.34)

where P̂ = P (θ̂T ), Î = I(θ̂T ) = Ω∗(θ̂T ), Ĵ = J(θ̂T ) = ∂µ
∂θ′ (θ̂T ) .

The score statistic is defined from the gradient of the objective function with respect to
θ evaluated at the constrained estimator. This gradient is given by:

DT =
∂µ′

∂θ
(θ̂c

T )Ω̂∗−1(µ(θ̂c
T ) − ḡT (Û)) (5.35)

and the test statistic is given by

ξS
T = TD′

T (Ĵ ′
0Î

−1
0 Ĵ0)−1DT , (5.36)

where Î0 = I(θ̂c
T ) = Ω∗(θ̂c

T ), Ĵ0 = J(θ̂c
T ) = ∂µ

∂θ′ (θ̂
c
T ) . Finally, we can introduce the difference

between the optimal values of the objective function that we shall call the LR-type test in
the simulations:

ξC
T = T [M∗

T (θ̂c
T ) − M∗

T (θ̂T )] . (5.37)

The three standard test statistics ξW
T , ξS

T , and ξC
T are known to be asymptotically equivalent

and to follow a χ2 distribution under the null hypothesis.
We also consider the C(α)-type test statistic defined by:

PC(θ̃c
T ) = T [µ(θ̃c

T ) − ḡT (Û)]′W̃0[µ(θ̃c
T ) − ḡT (Û)] (5.38)

where W̃0 = Ĩ−1
0 J̃0(J̃ ′

0Ĩ
−1
0 J̃0)−1P̃ ′

0[P̃0(J̃ ′
0Ĩ

−1
0 J̃0)−1P̃ ′

0]
−1P̃0(J̃ ′

0Ĩ
−1
0 J̃0)−1J̃ ′

0Ĩ
−1
0 , with J̃0 =

J(θ̃c
T ) = ∂µ

∂θ′ (θ̃
c
T ) , Ĩ0 = I(θ̃c

T ) = Ω∗(θ̃c
T ) , and P̃0 = P (θ̃c

T ). θ̃c
T is any root-n consistent

estimator of θ that satisfies ψ(θ̃c
T ) = 0. For our concern, θ̃c

T will be obtained by imposing
the constraints in the analytic expressions of the unrestricted method-of-moments estimator
θ̂T given at equations (2.11) to (2.13), yielding a consistent restricted estimator without any
optimization step. It is known [see Dufour and Trognon (2001, p.8, Proposition 3.1)] that
the C(α)-type test statistic is asymptotically distributed as a χ2 variable under the null
hypothesis.

In the simulations, we will focus on a particular form of the constraint, i.e. ψ(θ) =

(1, 0)
(

θs1

θs2

)
= θs1 and the null hypothesis H0 : ψ(θ) = 0 simplifies to H0 : θs1 = 0,

(e.g. θs1 ≡ aw, θs1 ≡ (aw, rw)′). We shall discuss at this stage a few anomalies arising
when testing the joint null hypothesis of no heteroskedasticity H0 : (aw, rw)′ = 0 against
an alternative of stochastic volatility. We shall stress two interesting findings. The first
one is when trying implementing the null hypothesis no heteroskedasticity, the score-type
test statistics such as the score statistic and the C(α) statistic become identically null by
construction through the derivatives of the moments of the volatility process. In that sense,
the score-type test statistics are no longer meaningful under weaker regularity conditions.
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As a consequence, the test of no heteroskedasticity against an alternative of stochastic
volatility is performed by means of the Wald statistic and the LR-type statistic. However,
some standard regularity conditions does not hold anymore when implementing the null
hypothesis of homoskedasticity. Indeed, under the null, the moment conditions defining the
estimator of the parameter of the one-factor SV model become nonlinearly redundant, that
is the three moment conditions (2.8), (2.9) and (2.10) reduces to only one relevant moment
condition. Furthermore, when testing H0 : (aw, rw)′ = 0 in the two-factor setup, which
correspond to test one factor against two SV factors, the correlation parameter ρ12 become
unidentified.

In such situations, it is known that the standard asymptotic theory does not provide
reliable inference any longer. A simulation exercise performed later on in the paper strongly
highlights the failure of the asymptotic theory when identification requirements are violated.
In particular, the Wald statistic will exhibit severe size distortions for any length of the
simulated path. As for the LR-type statistic, it will also demonstrate size distortions but in
a lesser extent and remains globally valid in presence of identification problems. Indeed, it
is known [see Dufour (1997)] that the Wald statistic is not reliable in models locally almost
unidentified whereas the LR statistic still provides reliable inference. In such a context,
simulation-based inference such as the technique of Monte Carlo tests presented in the
next section, is one solution to correct for these extreme size distortions observed for its
asymptotic counterparts. The other solution but not the easiest one consists in deriving
the null and alternative asymptotic distributions under nonstandard regularity conditions
as proposed by Andrews (2001).

We also provide confidence sets by inverting the test statistics. Let S0 = S(ψ, ȳ) note
one of the four previous tests statistics computed from the sample points ȳ = (y1, . . . , yT )
and under the hypothesis H0 : ψ(θ) = 0. It is known that there is a correspondence between
confidence sets and tests. The acceptance region of the hypothesis test, the set in the sample
space for which H0 : ψ(θ) = 0 is accepted, is given by

A(ψ) = {ȳ = (y1, . . . , yT ) : S(ψ, ȳ) ≤ χ2
1−α} (5.39)

for a α level test, and the confidence set, the set in the parameter space with plausible values
of ψ(θ), is given by

C(y1, . . . , yT ) = {ψ(θ) : S(ψ, ȳ) ≤ χ2
1−α} = {ψ(θ) : G(S(ψ, ȳ)) ≥ α} , (5.40)

where G(.) denotes the p-value function. These sets are connected to each other by the
tautology

(y1, . . . , yT ) ∈ A(ψ) ⇔ ψ(θ) ∈ C(y1, . . . , yT ) .

The hypothesis test fixes the parameter and asks what sample values (the acceptance region)
are consistent with that fixed value. The confidence set fixes the sample value and asks what
parameter values (the confidence set) make this sample value most plausible. Thus, if A(ψ)
is an acceptance region with level α, we have:
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PF [Y 	∈ A(ψ)] ≤ α ,∀F ∈ H0

and hence,
PF [Y ∈ A(ψ)] ≥ 1 − α ,∀F ∈ H0 .

Then, the coverage probability of the set C(Y ) is given by:

PF [ψ(θ) ∈ C(Y )] = PF [Y ∈ A(ψ)] ≥ 1 − α

showing that C(Y ) is a 1 − α confidence set for ψ(θ).
Following this methodology, we will build confidence sets for the autoregressive parameter

of the volatility process by retaining all the values of the parameter for which the p-value
function is greater than or equal to 1 − α, yielding a (1 − α)-level confidence set.

6. Monte Carlo testing

The technique of Monte Carlo tests has originally been suggested by Dwass (1957) for
implementing permutation tests, and did not involve nuisance parameters. This technique
has been later extended by Barnard (1963) and Birnbaum (1974). This technique has the
great attraction of providing exact (randomized) tests based on any statistic whose finite
sample distribution may be intractable but can be simulated.

We review in this section the methodology of Monte Carlo tests as it is exposed in Dufour
(2002) where the distribution of the test statistic S may depend on nuisance parameters.
For the test statistics exposed in section 5, their asymptotic distribution is asymptotically
pivotal (Chi-square distribution), but their finite sample distribution remains unknown. At
this stage, we need to make an effort of formalization to clearly expose the procedure. We
consider a family of probability spaces {(Z,AZ , Pρ) : ρ ∈ Ω} and suppose that S is a real
valued AZ -measurable function whose distribution is determined by Pρ̄ where ρ̄ is the “true”
parameter vector. We wish to test the hypothesis

H0 : ρ̄ ∈ Ω0,

where Ω0 is a nonempty subset of Ω. We consider a critical region of the form S ≥ c, where
c is a constant which does not depend on ρ. The critical region S ≥ c has level α if and only
if

Pρ[S ≥ c] ≤ α,∀ρ ∈ Ω0,

or equivalently,
sup
ρ∈Ω0

Pρ[S ≥ c] ≤ α.

Furthermore, S ≥ c has size α when

sup
ρ∈Ω0

Pρ[S ≥ c] = α.
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We consider a real random variable S0 and random vectors of the form

S(N, ρ) = (S1(ρ), . . . , SN (ρ))′, ρ ∈ Ω,

all defined on a common probability space (Z,AZ , P ), such that the variables
S0, S1(ρ̄), . . . , SN (ρ̄) are i.i.d. or exchangeable for some ρ̄ ∈ Ω, each one with distribu-
tion function F [x|ρ̄] = P [S0 ≤ x]. Typically, S0 will refer to a test statistic computed from
the observed data when the true parameter vector is ρ̄ (i.e., ρ = ρ̄), while S1(ρ), . . . , SN (ρ)
will refer to i.i.d replications of the test statistic obtained independently (e.g., by simulation)
under the assumption that the parameter vector is ρ (i.e., P [Si(ρ) ≤ x] = F [x|ρ]). In other
words, the observed statistic S0 is simulated by first generating an “observation” vector y
according to

y = g(ρ, z, v) (6.41)

where the function g has the bivariate AR(1)-SV specification as stated in equations (2.3)
and (2.4), with ρ = (c, µy, θ)′, θ = (a, ry, rw)′. The perturbations z and v have known
distributions, which can be simulated (N(0, 1) or student, or mixtures, e.g.). We can then
compute

S(ρ) ≡ S[g(ρ, z, v)] ≡ gS(ρ, z, v) . (6.42)

The observed statistic S0 is then computed as S0 = S[g(ρ̄, z0, v0)] and the simulated statistics
as Si(ρ) = S[g(ρ, zi, vi)] , i = 1, . . . , N where the random vectors z0, z1, . . . , zN are i.i.d. (or
exchangeable) and v0, v1, . . . , vN are i.i.d. (or exchangeable) as well.

The technique of Monte Carlo tests provides a simple method allowing one to replace
the theoretical distribution F (x|ρ) by its sample analogue based on S1(ρ), . . . , SN (ρ):

F̂N [x; S(N, ρ)] =
1
N

N∑
i=1

s(x − Si(ρ)) =
1
N

N∑
i=1

1[0,∞](x − Si(ρ))

where s(x) = 1[0,∞](x) and 1A(x) is the indicator function associated with the set A. We
also consider the corresponding sample tail area function:

ĜN [x; S(N, ρ)] =
1
N

N∑
i=1

s(Si(ρ) − x)·

and the p-value function

p̂N [x|ρ] =
NĜN [x|ρ] + 1

N + 1
.

The sample distribution function is related to the ranks R1, · · · , RN of the variables
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S1(ρ), . . . , SN (ρ) (when put in ascending order) by the expression:

Rj = NF̂N [Sj ; S(N, ρ)] =
N∑

i=1

s(Sj(ρ) − Si(ρ)), j = 1, . . . , N.

The central property which is exploited here is the following: to obtain critical values or
compute p-values, the “theoretical” null distribution F [x|ρ̄] can be replaced by its simulation-
based “estimate” F̂N [x|ρ] ≡ F̂N [x; S(N, ρ)] in a way that will preserve the level of the test
in finite samples, irrespective of the number N of replications used. At this stage we shall
refer the reader to Dufour (2002, p.13, Proposition 4.1) in which the author states the finite
sample validity of Monte Carlo tests when the p-value function is maximized over the entire
set of the nuisance parameters.

Therein, the author shows that the critical region sup{ĜN [S0|ρ] : ρ ∈ Ω0} ≤ α1 has level
α irrespective of the presence of nuisance parameters in the distribution of the test statistic
S under the null hypothesis H0 : ρ̄ ∈ Ω0. Likewise, the (almost) equivalent randomized
critical regions inf{F̂N [S0|ρ] : ρ ∈ Ω0} ≥ 1 − α1 or S0 ≥ sup{F̂−1

N [1 − α1|ρ] : ρ ∈ Ω0} are
shown to have the same level α as their non-randomized analogues. Dufour (2002) calls
such tests maximized Monte Carlo (MMC) tests. The function ĜN [S0|ρ] (or p̂N [S0|ρ]) is
then maximized with respect to ρ ∈ Ω0, keeping the observed statistic S0 and the simu-
lated disturbance vectors z1, ..., zN and v1, ..., vN fixed. The function ĜN [S0|ρ] is a step-
type function which typically has zero derivatives almost everywhere, except on isolated
points (or manifolds) where it is not differentiable. So it cannot be maximized with usual
derivative-based algorithms. However, the required maximizations can be performed by
using appropriate optimization algorithms that do not require differentiability, such as sim-
ulated annealing. For further discussion of such algorithms, the reader may consult Goffe,
Ferrier, and Rogers(1994).

On the other hand, Dufour (2002) also proposes simplified (asymptotically justified) ap-
proximate versions of Monte Carlo tests where the p-value function may be evaluated either
at a consistent point estimate and defines thereby a Bootstrap version, or at a consistent
set estimate of ρ and defines instead confidence-set-Monte Carlo tests. The author shows
[see Dufour, (2002, p.16, Proposition 5.1 and p.19, Proposition 6.3)] that both tests are
asymptotically valid in the sense that they have the correct level α asymptotically and the
estimated p-values converge to the true p-values. He also assesses the validity of the MMC
tests and the asymptotic Monte Carlo tests based on consistent set estimators for general
distributions , when ties have non-zero probability [see Dufour, (2002, p.14, Proposition 4.2
and p.17, Proposition 5.2)].

In the remaining of the paper we will implement the maximized and Bootstrap versions
of the Monte Carlo technique and investigate in a comparative Monte Carlo study their
actual size and power performances with respect to those of the standard asymptotic tests
developed in section 5.
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7. Simulation results

In this section we assess by simulations the actual sizes of the test procedures described
earlier in the paper. The nominal level of the tests has been set to α = 5%. M repre-
sents the number of replications to assess the actual size of the test, and N represents the
number of simulated statistics used in the Monte Carlo tests. T is the sample size of the
series yt whose data generating process is assumed to be specified as in equations (2.3)-
(2.4) for the one-factor SV model and as in equations (3.14)-(3.16) for the two-factor SV
model. Implementation is performed with the GAUSS software version 3.2.37. Note that
the autoregressive parameters aw and aη in the autoregressive specifications of the volatility
process are restricted to (-1,1) to ensure stationarity of the volatility process. At this end,
each time the estimate of a falls outside of its domain we truncate the estimator by setting
it to a = 0.99 when a >= 1 and to a = −0.99 when a <= −1.

The Wald statistic as defined at equation (5.34) is evaluated at the unrestricted method-
of-moments estimator θ̂1T . The Score statistic as defined at equation (5.36) is evaluated at
the restricted estimator θ̂c

T which minimizes the criterion M∗
T (θ) defined at equation (5.33)

submitted to the constraint aw = 0 whereas θ̃c
T represents another restricted estimator of

θ obtained by setting aw = 0 in the analytic expressions of the unrestricted method-of-
moments estimator θ̂T given at equations (2.11)- (2.13). The C(α)-type statistic as defined
at equation (5.38) is evaluated at this restricted estimator θ̃c

T of θ. Further, the LR-type
test statistic corresponds to the difference between the optimal values of the objective func-
tion. Let LR(Ω̂) ≡ ξC

T [see equation (5.37)] where Ω̂ ≡ Ω(θ̂T ). The weighting matrix Ω̂
is estimated by a kernel estimator with a fixed-Bandwith Bartlett Kernel, where the lag
truncation parameter K has been set to K = 2.

Let S denote the test statistic which alternately takes the form of one of the four test
statistics earlier mentioned and let S0 denote the statistic computed from the “pseudo-true”
data obtained by simulation under the true data generating process. The critical regions
used to perform the tests are of the form:

Rc = {S0 > χ2
1−α(i)}, i = 1, 2, 3

for the standard asymptotic tests, and of the form:

Rc = {p̂N [S0|ρ̂c
T ] ≤ α}

with the p-value function

p̂N [S0|ρ] =
NĜN [S0|ρ] + 1

N + 1
,

and the tail area function

ĜN [S0; S(N, ρ)] =
1
N

N∑
i=1

s(Si(ρ) − S0),
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for the Monte Carlo tests where the p-value function may be evaluated at any consistent
restricted estimator of ρ = (c, µy, θ

′)′ where µy has been set to zero everywhere. θ =
θ1 = (c, aw, ry, rw)′ refers to the parameter of the one-factor SV model while θ = θ2 =
(c, aw, ry, rw, aηrη, ρ12)′ refers to the parameter of the two-factor SV model. The simulated
statistics Si(ρ) i = 1, ..., N will always be evaluated under the null hypothesis in the Monte
Carlo tests whatever the hypothesis to be tested. The nominal level α has been set to
α = 5%. Monte Carlo (MC) tests whose p-value function is evaluated at a consistent point
estimate of the nuisance parameters follow the methodology presented in section 6. In
practice, to implement maximized MC tests (MMC), we maximize the p-value over a grid
with increment of 0.1 around a consistent estimate of the nuisance parameter under the null.

7.1. Size investigation

We study the actual size of the various tests and compare them to their nominal size fixed
at α = 5%. Concerning the specification test, we study in Table 1 the actual size of rejecting
the null hypothesis of a linear autoregressive volatility specification against an alternative
fractionally integrated gaussian volatility process. The parameters have been set to c = 0.3,
ry = rw = 0.5 and the autoregressive volatility parameter aw = 0.3. As usually encountered
in specification tests, the test underrejects the null in small samples and requires at least
T = 5000 observations to reach the nominal level stated at α = 5%.

The results reported in the top part of Table 2 for rejecting the null hypothesis H0 :
aw = 0 display evidence for the asymptotic tests of under-rejecting H0 for the Wald and
the C(α) tests particularly in small samples, whereas the score-type and the LR-type tests
tend to over-reject. In particular the underrejection under the null tends to induce a loss of
power under the alternative. By contrast, we can see in the bottom part of Table 2 that the
technique of MC tests achieves in correcting for the size distortions of the asymptotic tests.
We also investigate in Table 3, a joint test of homoskedasticity in the stochastic volatility
model by testing the null hypothesis H0 : aw = 0, rw = 0 by means of the Wald-type and
LR-type statistics. The score-type test statistics have been evacuated here since they are
identically null by construction. The asymptotic critical value is given by the 95%-quantile
of the chi-square distribution with two degrees of freedom which correspond to c2 = 5.99.
Note the extremely huge over-rejection (more than 90%) displayed by the asymptotic Wald
test when usual regularity conditions are not satisfied. Whatever sample size is considered,
the situation is not getting better. Concerning the LR statistic behavior, it tends to slightly
overreject in small samples and underreject in large samples. Once again we can note in
Table 3, that Monte Carlo tests achieve in correcting the severe size distortions observed for
the asymptotic tests. More specifically, the Wald statistic performs extremely poorly for the
joint null hypothesis H0 : aw = 0, rw = 0 whereas the LR statistic is more reliable. Indeed,
the estimators used to construct the test statistics, are based on the moments of the volatility
process but under this joint null hypothesis these moment conditions become nonlinearly
redundant. As a consequence, the Jacobian of the moment conditions is no more of full-
column rank under the null causing some singularity issue for the covariance matrices. It is
known [see Dufour (1997)] that the Wald statistic is not reliable under nonregular conditions
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whereas the LR statistic still provides reliable inference. It is worth noting in Table 4 that
when Monte Carlo tests (MC) evaluated at a consistent restricted estimate of the nuisance
parameter fail to correct for the size distortions observed in small samples (T = 50, 100) for
the LR statistic, its maximized version (MMC) does correct for the size distortions. Indeed,
we observe in Table 4 that MMC test achieves in reaching the correct level stated at α = 5%
in small samples (T = 50, 100) whereas MC tests remains around 10%. The MMC version is
performed by maximizing the p-value function on a neighborhood of the restricted estimate
of the nuisance parameters which are c and rw. Symmetrically, we observe that MC tests
correct for underrejection displayed by the LR statistic in large samples. On the other hand,
the results shown in Table 4 give evidence on the poor performance of the Wald statistic
under nonstandard regularity conditions and provide a striking illustration of the theoretical
results obtained in Dufour (1997).

Finally, we also study in Table 5 the size of the test of one factor against two SV factors.
The severe overrejections are striking and unfortunately are getting worse and worse as
the sample size increases. At T = 2000, the asymptotic test based on the standard χ2

distribution rejects H0 : aw = rw = 0 98.8% of the times for the Wald statistic while it
reaches 69.2% for the LR statistic. More interestingly, we observe that this time the MC
tests cannot correct for size distortions. Indeed. Bootstrap tests which are known to rely on
strong regularity conditions collapse in presence of identification problems. More specifically,
under H0 : aw = rw = 0, the correlation parameter ρ12 between the perturbation s of
the two SV factors become unidentified. This parameter has been set to a low level of
correlation, namely ρ12 = 0.3 to justify the usefullness of a second factor. In situations
of (almost) nonidentification, standard asymptotic distributions become invalid. Andrews
(2001) derives asymptotic results under nonstandard conditions, in particular when the
GARCH AR parameter becomes unidentified under a null of homoskedasticity.

7.2. Power investigation

Here we study the actual power of the different tests. Note that the standard asymptotic
tests for testing the null hypothesis H0 : aw = 0 have been corrected for size distortions
using the corresponding simulated critical values computed on M = 10, 000 replications, as
reported in Table 7 which yields exact 5%-level tests under the null hypothesis. Concerning
the specification test, to simulate the model under the alternative of a fractionally integrated
gaussian process, we follow Bollerslev and Mikkelsen (1996) and truncate the moving average
filter and then let the process run for a long while to attenuate the effects of transients.
Bollerslev and Mikkelsen suggest to truncate at k = 1000 but since the moving average
coefficients become very small after 160, we chose to truncate at k = 160 yielding the moving
average filter

∑160
k=0 ψkB

k. We then trim off the first 10000 observations. All parameters have
been kept to the same values as under the null hypothesis with the long memory parameter
d = 0.3 replacing the autoregressive parameter aw = 0.3. We then observe in Table 6
that the simulations averaged over 1000 replications, require at least 1000 observations to
exhibit sufficient power. Note also that the Monte Carlo tests do gradually loose power
when compared to their asymptotic analogues due to some noise introduced by lengthy
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simulations.
In Table 8, we study the capability of the test of rejecting the null of H0 : aw = 0.

We observe that both inference techniques, that is the asymptotic and Monte Carlo tests,
suffer from a lack of power when the sample sizes are very small (T = 50, 100, 200). Note
also the increase in power when we switch from one type of alternative: H1 : aw = 0.8
to a more persistent one: H1 : aw = 0.99. The power of Monte Carlo tests could be
improved in small samples by increasing the number of simulated statistics from N = 99
to N = 299, 499, 999. Note that although the asymptotic procedure seems in some cases
to exhibit more power w.r.t. Monte Carlo tests, the former however remains a not feasible
benchmark for real data whose data generating process (DGP) is generally unknown. In
this respect the simulation-based inference technique appears more robust to any DGP. Both
test procedures have more power when the sample size grows which is intuitive since both
tests are asymptotically justified. Further, note that the C(α) test demonstrates more power
than its competitors at any sample sizes. In particular the C(α) test performs better than
the score test statistic whereas both belong to the same score-type family. The C(α) test
statistic has besides the advantage of being the easiest to implement since it does not require
in our case any optimization procedure. Indeed the restricted estimate of θ is obtained by
simply imposing the constraint in the analytical expressions available for the unrestricted
moment estimator.

We also examine in Tables 9 and 10, the power of the joint test of the null hypothesis
of homoskedasticity against the alternative H1 : a = 0.5, rw = 0.5 in the one SV factor
framework. The Wald-type test has little power compared to the LR-type test which still
remains valid under nonstandard conditions. Indeed, the Wald test after being corrected for
the size distortions, is not consistent at all when increasing the sample size. In this respect, it
is known [see Dufour (1997)], that Wald tests are not reformable in nonstandard situations,
whatever asymptotic, Monte Carlo or maximized MC tests, exhibit the same inconsistent
behavior for the Wald test. By contrast, the LR-type test remains consistent despite some
singularity issues, even though its finite and asymptotic distribution may be modified.

We further study the power of the test of one factor against two SV factors in Table 11.
We observe that the test has little power. The increase in power with the sample size is very
slow and does not exceed 39% at T = 2000 for the LR statistic. Once again, we observe
that the Wald statistic leads to an inconsistent test under identification problems since the
rejection of the null hypothesis decreases with the sample size. This illustrates once more
the invalid feature of conducting inference with Wald statistics under nonregular conditions.
Unlike the Wald statistic, the LR statistic remains valid in such situations even though its
asymptotic distribution may be modified. Furthermore, the LR statistic is preferred over the
Wald statistic for its robustness (invariance) properties [see Dagenais and Dufour (1991)].

Finally, we also provide some plots of the power functions for asymptotic (in dashed
line) and Monte Carlo (in cubic line) Wald and LR tests in Figure 1, and for score-type
and C(α)-type tests in Figure 2, respectively. Once again, we observe that the C(α) test
has more power than its counterparts and displays a much smoother power function when
compared to the tests involving the unrestricted estimator (the LR or the Wald tests). The
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score-type test also performs better than the LR or the Wald tests.

8. Empirical application

In this subsection we test the null hypothesis of no-persistence in the volatility, the hypoth-
esis of linear specification for the volatility process against the alternative of a fractionally
integrated specification, and also the null hypothesis of one SV factor against two SV factors,
from real data (Standard and Poor’s Composite Price Index (SP), 1928-87).

8.1. Data

The data have been provided by Tauchen where Efficient Method of Moments have been
used by Gallant, Hsieh and Tauchen to fit a standard stochastic volatility model. The data
to which we fit the univariate stochastic volatility model is a long time series comprised
of 16,127 daily observations, {ỹt}16,127

t=1 , on adjusted movements of the Standard and poor’s
Composite Price Index, 1928-87. The raw series is the Standard and Poor’s Composite Price
Index (SP),daily, 1928-87. We use a long time series, because, among other things, we want
to investigate the long-term properties of stock market volatility through a persistence test.
The raw series is converted to a price movements series, 100[log(SPt) − log(SPt−1)], and
then adjusted for systematic calendar effects, that is, systematic shifts in location and scale
due to different trading patterns across days of the week, holidays, and year-end tax trading.
This yields a variable we shall denote yt.

8.2. Results

The unrestricted estimated value of ρ from the data is:

ρ̂T = (0.129, 0.926, 0.829, 0.427)′ ,

σ̂T = [0.007, 2.89, 1.91, 8.13]′ ,

where the method-of-moments estimated value of a corresponds to âT = 0.926. We may
conjecture that there is some persistence in the data during the period 1928-87 what is
statistically checked by performing the tests below. The restricted estimated values of ρ
from the data are:

ρ̂c
T = (0.129, 0, 0.785, 1.152)′ ,

σ̂T = [0.007, −, 1.95, 1.77]′ ,

and
ρ̃c

T = (0.129, 0, 0.829, 1.133)′ ,

σ̂T = [0.007, −, 1.91, 1.66]′ .

Note the large discrepancy between the unrestricted and restricted estimates of rw where
the restricted estimates are not consistent if the null hypothesis H0 : a = 0 is false.
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In Table 12, we observe that all standard asymptotic tests reject indeed the null hypoth-
esis of no-persistence in the volatility since S0 > χ2

1−α(1) = 3.84 as well as all the Bootstrap
tests whose p-value is equal or less than 5%, whatever length of the simulated statistics is
used to implement them. At this stage, it is well-known in the financial literature that finan-
cial returns display long-run dependence in the volatility, a feature which is not fully capture
by standard SV models. With this respect, Bollerslev and Mikkelsen (1996), Ding, Granger
and Engle (1993), Breidt, Crato and Lima (1998) present evidence that long-memory models
like those of Granger and Joyeux (1980) might be needed to account for the high degree of
persistence in financial volatility. That is the reason why we found it possibly informative
to implement a specification test for a linear volatility against a fractionally differencing
volatility process. Concerning this specification test, the results shown in the bottom part
of Table 12 give evidence in favor of the null hypothesis of linear volatility against the al-
ternative of a fractionally integrated volatility process as given by the statistic ξ̃C

T defined
in equations (4.30) and (4.31). Indeed, the observed statistic (ξ̃C

T = 0.00345) is much below
the asymptotic critical value of χ2

95(3) = 7.81. The same hold for the MC p-values which are
around 0.8 and greater than α = 0.05. Such an observation might indicate that introducing
a long-memory component in the volatility process is not well-suited or at least sufficient
to capture the dynamic of financial returns. This evidence seems to give support for the
presence of nonlinearities, to dependence in the tails which could be potentially captured
by a second SV factor. To check for that, we implement the test for one SV factor against
two SV factors by testing H0 : aw = rw = 0 in the two-factor SV framework. The first
factor may act as a long-memory component while the second factor is expected to model
the tail behavior. In Table 12, the asymptotic and bootstrap tests based on the LR statistic
do reject the null of one factor in favor of two SV factors in the data, at all levels. By
contrast, the Wald statistic once again yields controversial results. Indeed, the asymptotic
test does reject the null whereas the bootstrap tests cannopt reject the null of one SV factor.
This observation confirms the idea that inference based on Wald statistics does not produce
reliable inference in nonstandard situations [see Dufour(1997)].

We also provide in Table 13 confidence sets by inverting the corresponding test statistics
as exposed in section 5. The coverage probabilities for the confidence sets are 1−α = 95%.
We can observe that all tests do cover the estimated value of a ,(â = 0.926), at the confidence
level of 95%, except for the Bootstrap version of the score test statistic that covers at a lower
confidence level of 93%. We may conclude by saying that the data seem to exhibit some
persistence features as usually expected from financial data. But more interestingly, our
empirical results seem to support the result obtained by Chernov et alii (2003) that two-
factor SV models better accommodate the tail behavior of (conditional) return distributions
and possibly capture some rapid moves in the dynamic of volatility during extreme market
conditions.
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9. Concluding remarks

The C(α) test outperforms the other types of tests while being the easiest to implement since
it does not require in our framework any optimization procedure. It has good statistical
properties: a good level and a high power for sufficiently large sample sizes. On the other
hand, Monte Carlo tests and maximized MC tests appear as a good alternative to the
standard asymptotic tests, specifically when the standard asymptotic approach fails - in
situations of almost-unidentified models where the modified distribution of the test statistic
remains unknown. We may consider as further research an extension of our approach to
asymmetric and fat-tailed distributions such as the asymmetric student distribution and
shall test the hypothesis of leverage effect in the stochastic volatility model.
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Table 1. Size of asymptotic and Monte Carlo tests, specification test

LEVELS in % specification test
T=50 T=100 T=200 T=500

Asy MC Asy MC Asy MC Asy MC
LR(Ω̂) 0.2 0.3 0 0.1 0.1 0.1 0 0.1

T=1000 T=2000 T=5000
Asy MC Asy MC Asy MC Asy MC

LR(Ω̂) 0 0.7 0.1 0.7 5.1 1.3 - -

Table 2. Size of asymptotic and Monte Carlo tests, ,H0 : a = 0

LEVELS in % (under H0 : aw = 0)
Asymptotic tests

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 0.1 0.7 0.9 2.1 2.4 3.2
Score(Ω̂C) 7.7 6 2.6 2.8 3.2 3
LR(Ω̂) 7.5 4.8 3.8 2.5 3 3.7
C(α) 0.4 0.7 2.6 3 2.9 2.9

Monte Carlo tests
T=50 T=100 T=200 T=500 T=1000 T=2000

Wald 5.4 5.1 3 2.6 5.1 5.5
Score(Ω̂C) 5.2 5.1 6 6 4.7 3
LR(Ω̂) 4.2 5.6 5.8 6.6 5.5 4.8
C(α) 4.7 4.4 6 6.9 5.4 4

Table 3. Size of asymptotic and Monte Carlo tests, H0 : aw = 0, rw = 0

LEVELS in % (H0 : aw = 0, rw = 0),(nuisance:c = 0.3, ry = 0.5)
Asymptotic joint tests

T=50 T=100 T=500 T=1000 T=2000 T=5000
Wald 94.8 91.6 90.7 90 90.2 92.3
LR(Ω̂) 8.8 8.9 1.4 0.7 0.5 0.6

Monte Carlo joint tests
T=50 T=100 T=500 T=1000 T=2000 T=5000

Wald 5.5 4.6 3.6 5.8 4.4 4.3
LR(Ω̂) 8.1 7.3 4.7 4.5 3.2 4
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Table 4. Size of asymptotic and Monte Carlo tests, H0 : aw = 0, rw = 0

LEVELS in % (H0 : aw = 0, rw = 0), (nuisance:c = 0.95, ry = 0.5)
T=50 T=100 T=500

Asy MC MMC Asy MC MMC Asy MC MMC
Wald 93.8 4.3 4.5 92.2 5 4.2 91.1 3 2.9
LR(Ω̂) 9.4 10.5 3.3 8.2 9.9 5.2 1.50 6.4 4.9

T=1000 T=2000 T=5000
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 88.8 5.6 5 90.8 4.4 4.3 91 3.9 3.9
LR(Ω̂) 0.6 5.6 4.1 0.4 3.2 3.1 0.6 4.7 4.1
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Table 5. Size of asymptotic and Monte Carlo tests, H0 : aw = 0, rw = 0, two-factor SV
model

LEVEL in % (H0 : aw = 0, rw = 0)
(nuisance: c = 0.95, ry = 0.5, aη = 0.7, rη = 0.5, ρ12 = 0.3)

T=50 T=100 T=500
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 4.8 15.8 5 25.4 15.4 2 72.8 19.2 5.2
LR(Ω̂) 19.6 7.4 2 35.2 10 1.6 60.8 5.6 2.4

T=1000 T=2000 T=5000
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 91.4 21.2 3.8 98.8 15.4 3 - - -
LR(Ω̂) 65.2 6.2 2.8 69.2 15.8 2.1 - - -

Table 6. Power of asymptotic and Monte Carlo tests, specification test

POWER in % specification test
T=50 T=100 T=200 T=500

Asy MC Asy MC Asy MC Asy MC
LR(Ω̂) 7.2 1.5 2 1.8 0.4 8.4 6.8 26

T=1000 T=2000 T=5000
Asy MC Asy MC Asy MC Asy MC

LR(Ω̂) 32.5 33.2 74.4 41.1 83.3 46.5 - -

Table 7. Simulated critical values, under H0 : aw = 0

Simulated critical values
M=10,000 replications

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 0.8458 1.4295 2.8303 2.5826 2.7878 3.0203
Score(Ω̂C) 1.7051 2.3336 2.6773 2.9260 2.9472 2.9523
LR(Ω̂) 5.7228 3.7033 2.7759 3.0385 3.1352 2.9970
C(α) 1.7974 2.3030 2.6901 2.8807 2.8879 2.9133
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Table 8. Power of size-corrected asymptotic and Monte Carlo tests

POWER in % (under H1)
Size-corrected Asymptotic tests

H1 : aw = 0.8
T=50 T=100 T=200 T=500 T=1000 T=2000

Wald 10.9 17 23.4 60.4 84.5 93.2
Score(Ω̂C) 16.8 25 47 78.6 93.9 97.8
LR(Ω̂) 10.3 16.8 37.6 71.5 88.9 96.6
C(α) 19.7 30.9 51.8 81.8 96 99.5

H1 : aw = 0.99
Wald 31.2 59.5 81.5 90.9 99 99.6
Score(Ω̂C) 39.7 55.7 85.4 97.7 99.3 99.9
LR(Ω̂) 25 44.6 77.3 96.7 99.2 99.3
C(α) 41.5 68.8 91.6 99.2 99.7 100

Monte Carlo tests (N = 99)
H1 : aw = 0.8

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 10.1 11.8 19.4 44.8 68.3 84
Score(Ω̂C) 15 18.2 27.9 63.3 89.7 96.8
LR(Ω̂) 9.4 10 23.4 60.5 83.5 92.4
C(α) 21.6 28.8 43.4 74.1 93.5 98.5

H1 : aw = 0.99
Wald 28.7 54.1 74.6 87.5 96.3 96.5
Score(Ω̂C) 11.9 22.3 39.6 82.7 94.4 97.8
LR(Ω̂) 15.8 29.8 55.6 72.6 98.5 99.2
C(α) 36.1 62.6 78.8 91.6 99.6 99.9

Table 9. Power of asymptotic and Monte Carlo tests, H1 : aw = 0.5, rw = 0.5, set I

POWER in % (under H1)
Asymptotic joint tests
H1 : aw = 0.5, rw = 0.5

T=50 T=100 T=500 T=1000 T=2000 T=5000
Wald 15.8 17.6 18.1 12.7 6.7 1.3
LR(Ω̂) 10.9 13.3 84.8 99.4 99.9 100

Monte Carlo joint tests (N = 499)
T=50 T=100 T=500 T=1000 T=2000 T=5000

Wald 16.1 18.8 18 12.6 6.9 1.6
LR(Ω̂) 14.5 15.7 86.5 99.1 99.9 100
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Table 10. Power of asymptotic and Monte Carlo tests, H1 : aw = 0.5, rw = 0.5, set II

POWER in % (H1 : aw = 0.5, rw = 0.5), (nuisance: c = 0.95, ry = 0.5)
T=50 T=100 T=500

Asy MC MMC Asy MC MMC Asy MC MMC
Wald 18 16.8 12.8 20.2 17.2 16.6 17.6 16.4 16.2
LR(Ω̂) 11 14 3.8 15.4 17.4 11.6 84.6 85.6 85.4

T=1000 T=2000 T=5000
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 12 11.6 11.5 6 6 6 1 0.8 0.8
LR(Ω̂) 99.6 99 99 100 100 100 100 100 100
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Table 11. Power of asymptotic and Monte Carlo tests, H1 : aw = 0.5, rw = 0.5, two-factor
SV model

POWER in % (H1 : aw = 0.5, rw = 0.5)
(nuisance: c = 0.95, ry = 0.5, aη = 0.7, rη = 0.5, ρ12 = 0.3)

T=50 T=100 T=500
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 6.6 22 18.2 4.6 9.4 5.6 2 6 4.2
LR(Ω̂) 7.6 9.8 5.8 9.4 12.8 5.8 18.6 20 11.8

T=1000 T=2000 T=5000
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 0.8 6 3.4 0.6 7 2.8 - - -
LR(Ω̂) 28.4 30 18.2 31.6 38.8 25.2 - - -

Table 12. Empirical application

data
H0 : aw = 0

Asymptotic tests Monte Carlo tests
S0 N=19 N=99 N=999

Wald 206.03 0.05 0.01 0.001
Score(Ω̂C) 1039.04 0.05 0.01 0.001
LR(Ω̂) 63.20 0.05 0.01 0.001
C(α) 854.55 0.05 0.01 0.001

specification test
ξ̃C
T 0.00345 0.80 0.80 0.789

test of one against two SV factors
Wald 522.55 0.25 0.21 0.18
LR(Ω̂) 3.95e8 0.05 0.01 0.001

Table 13. Confidence sets

Confidence sets for a, (1 − α = 95%)
Asymptotic Monte Carlo

Wald ]0.92,0.93] [0.92,0.93]
Score(Ω̂C) ]0.92,0.93] [0.92,0.93]∗

LR(Ω̂) ]0.92,0.93] [0.92,0.93]
C(α) ]0.92,0.93] [0.92,0.93]
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Figure 1. Asymptotic and Monte Carlo Power functions, Wald and LR tests
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Figure 2. Asymptotic and Monte Carlo Power functions, score and C(α) tests
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